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Lecture 9: Superconductor Diamagnetism

In this lecture, we will apply linear response theory to the diamagnetism of a clean BCS super-
conductor.

9.1 Clean BCS Superconductor Diamagnetism at 7' =0

9.1.1 General Considerations

Based on symmetry arguments, it is easy to see that when an isotropic system is placed in
an external field, current always flows in the direction of the applied field. As a result, the
paramagnetic current response tensor

is diagonal for an isotropic system. Within the context of linear response theory, this definition
of R, yields

() = —RuwAu(q,w) (9-2)
The total current also includes the diamagnetic piece
(G} = G + (G2) (9:3)
2
a_ ne
<.],u> - ch A/L (94)

arising from the A - A term in the Hamiltonian.
Combining these terms, the total current to linear order in A, is given by

() = —Kuw (@ w) Ay (q,w) (9.5)
with total current response tensor
2
ne
KMV = Rll,l/ + wéuu (96)
7L€2

For normal metals, the constant diamagnetic current —>%; A, is exactly cancelled by part
of the paramagnetic current. In a superconductor, however, this piece of the current survives.
We begin by calculating the (diagonal) paramagnetic current response R,,, of the BCS ground
state.
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9.1.2 Quick Review of BCS Theory

To calculate Ry, for a clean (BCS) superconductor, we will need to evaluate the matrix element
(n|jk(@)|0) on the eigenstates of the BCS effective Hamiltonian Hyg BCS ' In the basis of single-
parttcle momentum-eigenstates, we have:

Hyp™ = Zé;.c- re = 2 (Ackely +4%c_gag) 38

k

where
Ee=¢€g— U (9.9)

and cTE - (c};a) is the creation (destruction) operator for an electron with momentum hk and spin
o. :

The first term of equation (9.8) is simply the free electron gas energy, relative to the chemical
potential p2. The second term comes from mean field averaging-out the two destruction (creation)
operators of the four operator interaction

Z Vi r:ar:kck, (9.10)
kR

To diagonalize HE S, we can change from the single particle momentum-eigenstate basis to
the Bogoliubov quas:part:cle basis states defined by the (unitary) transformation

Vi = UECiy — v,;cf_gl (9.11)
? —
iy = VG +uge’ ¢ (9.12)

where uj; € R and in general v; € €. To ensure unitarity, [ug[? + [vg[* = 1.

Because this transformation is simply a unitary transformation on single Fermion basis
states, the resulting Bogliubov quasiparticle operators still satisfy the Fermionic anticommutation
relations:

VoL .} = Sz B0ar 1 (9.13)
o i} =108 o7 1} =0 (9.14)
The inverse transformation is given by
g = upl R (9.15)
> I vy + “ﬁigl (9.16)
We have freedom in the choice of phase for vg, which is related to the winding number of

the corresponding wave function. Assuming v; € R, substituting relations (9.15) and (9.16) into
(9.8) we get

HES =Y Bl ., (9.17)
Ko
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with
&2+ 1A (9.18)
g 1 512
2 _ 1 &k

Thus the BCS Hamiltonian is diagonalized by the Bogliubov states with spectrum {Ep}.

9.1.3 Calculation of R,

To evaluate the matrix element in equation (9.7), we need the explicit form of the paramagnetic
current operator. In second quantized notation in terms of the basis of single particle momentum-
eigenstates,

D=5 (B om
ko
Expanding out the sum over spins o and letting k — —(k + q) for the o = | terms, we get
D= 2 (bt %) (b =< ) (922)
E
Now, we need to transform into the Bogoliubov basis by substituting relations (9.15) and

(9.16) for iy and CT—EL' To do so, we will also need to make use of the Hermitian conjugates of
(9.15) and (9.16):

= g VR (9.23)
kLT T ”m,% +upv_ gy (9.24)

Inserting these relations, we get
g 1 = (“Hﬂgm +“1§‘+@7—<E+m> (“WET +”E7T—El> (9-25)

t t
(UE+JUE)7E+¢TT7’5T + (v, *)’Y—(Eﬂ'ﬁﬂfﬁi
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= WV gy Vi~ (VRVE g el Vg = T R g Yo
— (ug

Pt
+(“z€+q”1€)7,g+q~ﬂ Ve VR V= (Rl
and
i (it N (A o
C g Crl = (_“mﬁ“ﬂ_m)( Vi qr +“k+<ﬂ—<k+m> (9-26)
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o fbraany f i e f -
(ukvk+,§-)7_a'f’-€'+ﬂ + (ukuk.,.,;-)‘)‘_m 7—(k+&)1

R i . i
= = (”j‘tvj;.‘.,;.')'YE_'_ﬂ'fET + [U§UE+Q'){'Y£T; 'YE+§'I'}
gy i t i
gl G 7 B PR U o S Al UL 9 A A7 A
Substituting these back into (9.22) and exercising our choice of {v;} € R, we get

. g q, t T
Jﬂ(@ - _E Z (k.u T ?H) {(U§+¢“§ + vivi-{-@') (TE+£TI‘1§T - '7_’-:*17_ (E,Hnl) (9‘27)

i t
+H(Ugs g% — UEUReg) ('TEW'V-Q + 'Tf?r’*—u?ml) }

Notice that the anticommutators (U5U§+¢}{TFI‘7;?+QT} and (”E”E+€){7—(E+ﬂ1'7i§l} are 0 for

- = % - s } hy "
q # 0 and cancel out for § = 0 when € 5 C- (R4l 18 subtracted from cfc‘+¢;-‘tc#T‘ With the
definitions
bR Rag = VRt T ViVRsg (9-28)
PER+q = YR+q"F — YRVE+q (9.29)

equation (9.27) becomes
PR =L n L y SRS | -
@D =3 (ka5 ) {rea (ki =25 e) 9:80)
i

= i t e
+ PiR+q (7E+-;‘r7-i='1 + ’Yu‘f-(kml) }

The coefficients £} ¢ 7 and PR fvq are known as coherence factors. Note that each term in

equation (9.30) conserves total spin projection along the z-axis, and has the effect of increasing
the net total momentum by hig.
At T = 0, the BCS groundstate has no quasiparticle excitations. Thus

Vst 00Bes =7_g|0)Bes =0 (9.31)

The only term that survives is the term containing the double creation operator 'y;% i 7“_ £
yielding

__e w\? 2 1 _ 1
Ry =—-11 Zk: (ku + 9 ) ki { w—(Bg+ Bg ) +in  w+(Eg+ B +in (2.82)

where the excitation energy E, — Ey = (E; + Ej; +q.) since each excited state comes from the
double excitation 'y;[_. 'TL'E]‘
In the DC limit, w = 0 and

e 2 1
Ryu(w=0)~—— 3" (ku+ %) PR i3 (9.33)

3
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since the largest contribution comes from the smallest energy excitations, which have energy 2A.
In the ¢ — 0 limit, however, p; » TP 0, which gives
0

Ruu(w:()ﬂf—ﬂ))—)ﬂ:

0 (9.34)

Inserting this into the expression for the total current response tensor K, , we get

2 2
ne ne
K

MV(w = 07(7—> O) = R/“’(w =0, q_°—> O) + w(swj =0+ Wawj (935)

Thus in a superconductor, the diamagnetic current survives in contrast to the cancellation that
occurs for a normal metal As a result, in this limit at 7= 0

n62 -

(§)=- (9.36)

mc?
This is a curious result, as the specific form of Ais gauge dependent. In fact, the result is
only true in the London Gauge in which V - A = 0. How did this choice of gauge creep into our
derivation?
It is possible that the gap A depends on A. In this case, we would have to solve a new self-
consistent BCS equation in the presence of the altered form. According to rotational invariance,
any correction to A must take the form

A=Ag+¢ A (9.37)

where ¢ is some vector relevant to the system. In the present case, the only relevant vector is §.
By choosing the London Gauge V - A = 0 we ensure that §- A = 0, thus guarantying the validity
of the result just derived.

9.2 BCS Diamagnetism at Finite Temperatures

At finite temperatures T' > 0, the quasiparticle state populations will in general be nonzero. Thus
we expect all four terms of equation (9.30) to contribute to the matrix element in (9.7). Pulling
all of these terms together, we get

f(Egyq) — f(ER)

e? qu\ 2

Ro(dw) = (kt i) Y 9.38
(4 w) mg%: nt g KR+ By — Ep _—w iy (9.38)

2 FEpg) +F(ER) =1 (B g + f(Bp) -1

PRR+a | 0= (Bp + Bryp) +in  w+ (B + By, ) +in
If we now let w = 0 and take the limit ¢ — 0, p; Frad 0 as before, but él?.l?—wj — 1 since

|ug|? + |vg]? = 1. This yields
k,\? of
- o 2 Iz
Ruu(@— 0,0 =0) = —2¢ Z<m> oF; £0 (9.39)
E

Although the paramagnetic current response at finite temperature is nonzero, for low tem-
peratures (kpT/A < 1) its contribution will be exponentially small and will not be sufficient
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’I’LE

to fully cancel the London diamagnetic curren . We can measure the degree to which the
system retains its superconducting diamagnetic behav1or by writing the total current response in
terms of an effective “superfluid density” p;s(T):

ps(T)e?
Ky = T (9.40)
In this “two-fluid” picture,
ps(T) = ps(0) — pu(T) (9.41)

where p,(7T') is the “normal-fluid” density due to excited quasiparticles at temperature T'. It
is these excited quasiparticles that are responsible for the non-superconducting aspect of the
system’s behavior at finite temperatures. According to these definitions, we can identify

2

Ryup(§— 0,0 = 0) = —2¢ QZ <m> 55 = ——pa(T) (9.42)

Near T = 0, the superfluid density behaves as ps(T") e~A/ksT  Near the critical point, we
get the mean-field result for the order parameter ps ~ |A(T)|? < (T. — T). As the temperature
is raised from 0, the increase in quasiparticle excitations and decrease of the energy gap work
together in a sort of “runaway process” to kill the superconductivity.

9.3 Superconductors with Vanishing Gaps

Although the BCS ground state only involves a thin skin of electrons near the Fermi surface, all
electrons participate in the diamagnetism proportional to ne?/mc?. Thus an energy gap is not
essential for superconductivity. In fact, there are many examples of gapless superconductors.

If fixed magnetic impurities are present, then electron-impurity scattering can break up BCS
pairs through the spin-spin interaction. Due to impurity scattering, there is a finite density of
states at the Fermi energy. The system can still be superconducting, however, with a significantly
reduced superfluid density ps;. The net effect is that magnetic impurities reduce the critical
temperature T,.

Additionally, there are superconductors for which the gap A depends on direction (i.e. A =
A(k)). Along some directions {k'} the gap may vanish. Such directions are called nodes. For
d-wave superconductors, A(E) o cos 20, which has four nodes at 6,, = (2n + 1)7/4. Nonetheless,
superconducting behavior is still observed.

9.4 Coherence Factors

In addition to the coherence factors Ek i and Piivq that arose in our consideration of the
BCS matrix elements of the paramagnetlc current operator there are several other analogous
coherence factors that arise from the consideration of the matrix elements of other operators.
These coherence factors are ubiquitous in problems involving superconductors.

9.4.1 Ultrasonic Attenuation

One such example is the calculation of ultrasonic attenuation in a superconductor — what is
the lifetime of a phonon sent through a superconductor? In a normal metal, the phonon can



Coherence Factors 7

scatter an electron into a higher energy state, affecting a so-called particle-hole excitation. At
T = 0, however, the lack of any quasiparticles and fiw < A imply that there is no way for the
system to absorb energy from the photon. As T increases and the normal-fluid density increases
as well, absorption is possible and phonon attenuation increases monotonically to the normal
metal value at T' = T.,.

In this situation, the relevant operator is the electron-phonon coupling

T T
Crgo R (b@ + b7q~> (9.43)

By substituting the relations for c£+ and Cf o, I terms of the Bogoliubov quasiparticle

4o

creation/destruction operators, a different set of coherence factors is obtained.

9.4.2 Nuclear Spin Relaxation Rate (1/7})

Another interesting effect to examine is the longitudinal relaxation rate for a magnetic nucleus
embedded in a metallic sample. The interaction has the form

Hys=AI-§ (9.44)

where I and S are the nuclear and conduction electron spin operators, respectively.

One effect of electron-impurity scattering is that a conduction electron can undergo a spin-
flip and be sent outside the Fermi sphere. If there is an electron spin-flip, the magnetic nucleus
must also undergo a flip of its own. Thus relaxation of the magnetic nucleus is expected.

If the calculation is carried out, one discovers the Korringa Law

T const (9.45)
for the normal metal state.

Below T, the relaxation rate rises to a mazimum before decaying away to 0 as T' — O.
This peak is called a Hebel-Slichter peak, and results from the small enhancement of the density
of states near the gap edge that makes up for the loss of density in the gap region. It is a bit
surprising that a similar peak is not observed for the phonon attenuation. However, the coherence
factors that arise in the ultrasonic attenuation calculation exactly cancel this effect, giving rise to
the observed monotonic behavior. For more on this topic, see the books by Schrieffer or Phillips.
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