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Lecture 9: Superconductor Diamagnetism
 

In this lecture, we will apply linear response theory to the diamagnetism of a clean BCS super­
conductor. 

9.1 Clean BCS Superconductor Diamagnetism at T = 0 

9.1.1 General Considerations 

Based on symmetry arguments, it is easy to see that when an isotropic system is placed in 
an external field, current always flows in the direction of the applied field. As a result, the 
paramagnetic current response tensor 

Rµν = −i � 0 | jµ
p(�q, t), jν

p(−�q, 0) | 0 � (9.1) 

is diagonal for an isotropic system. Within the context of line ar response theory, this definition 
of Rµν yields 

�jµ
p� = −Rµν Aν (� (9.2)q, ω) 

The total current also includes the diamagnetic piece 

�jµ� = �jµ
p� + �jµ

d� (9.3) 
2 

�jµ
d� = 

ne
Aµ (9.4)

2
− 

mc 

arising from the A� A� term in the Hamiltonian. · 
Combining these terms, the total current to linear order in Aν is given by 

�jµ� = −Kµν (� q, ω)q, ω)Aν (� (9.5) 

with total current response tensor 
2ne

Kµν = Rµν + δµν (9.6) 
mc2 

2
For normal metals, the constant diamagnetic current − ne 

2 Aµ is exactly cancelled by part mc 
of the paramagnetic current. In a superconductor, however, this piece of the current survives. 
We begin by calculating the (diagonal) paramagnetic current response Rµµ of the BCS ground 
state. � 1 1 

Rµµ = |� n |jµ
p(�q)| 0 �|2 

ω − (En − E0) + iη 
− 

ω + (En − E0) + iη 
(9.7) 

n 

1 
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Clean BCS Superconductor Diamagnetism at T = 0 3 

with 

E� = ξ 2 + |Δ|2 (9.18)k �k 

1 ξ� 
u� 

2 = 1 + k (9.19)
k 2 E� � k �

1 ξ�
v�k 

2 =
2 

1 − 
E

k

� 
(9.20) 

k 

Thus the BCS Hamiltonian is diagonalized by the Bogliubov states with spectrum {E�k}. 

9.1.3 Calculation of Rµµ 

To evaluate the matrix element in equation (9.7), we need the explicit form of the paramagnetic 
current operator. In second quantized notation in terms of the basis of single particle momentum­
eigenstates, 

jp(�q) = − 
e

kµ + 
qµ 

c† c� (9.21)µ m 2 �k+� k,σ q,σ 
�k,σ 

Expanding out the sum over spins σ and letting �k → −(�k + q�) for the σ = ↓ terms, we get � � � � � 
jµ

p(�q) = − 
e

kµ + 
qµ 

c�
† 

k+�q
c�k↑ − c† 

k 
c −(�k+q�) (9.22) 

m 
�k 

2 ↑ −� ↓ ↓ 

Now, we need to transform into the Bogoliubov basis by substituting relations (9.15) and 
(9.16) for c� and c† . To do so, we will also need to make use of the Hermitian conjugates of k↑ −�k↓
(9.15) and (9.16): 

c�
† 

k 
= u�kγ�k 

† + v�k 
∗γ −�k (9.23) 

↑ ↑ ↓ 

c −� = − v� γk 

† + u� γ −� (9.24)k k � k k↓ ↑ ↓ 

Inserting these relations, we get � � � � 
c�
† 

k+� 
c�k = u�k+�q γ�k

† 

+� 
+ v�k

∗ 
+�q 

γ −(�k+�q) u�kγ�k + v�kγ† 

k
(9.25)

q↑ ↑ q↑ ↓ ↑ −� ↓ 

= (u�k+q�u�k)γ�
† γ�k + (v�kv� 

∗ )γ k+�q) γ† 

k+q�↑ ↑ k+�q −(� ↓ −�k↓ 

+ (u� v� )γ
† γ† + (u� v� 

∗ )γ γ�k+q� k �k+q� −�k k k+�q −(�k+q�) k ↑ ↓ ↓ ↑ 

= (u� u )γ† γ� � v
∗ )γ† γ + (v� v

∗ , γ†k+q� �k �k+q� k↑ − (vk �k+q� −�k −(�k+�q) k �k+q�
){γ −(�k+q�) −�k 

}
↑ ↓ ↓ ↓ ↓

+ (u�k+q�v�k)γ�
† γ† − (u�kv�k

∗ 
+q�

)γ�k γ −(�k+�q)k+q�↑ −�k↓ ↑ ↓ 

and � � � � 
c† c = + u� γ

† γ† + u� γ (9.26)
−�k↓ −(�k+�q)↓ −v�k 

∗γ�k↑ k −�k↓
 
−v�k+�q �k+�q↑ k+�q −(�k+q�)↓ 

= (v�k 
∗v�k+q�)γ�k↑ γ�k

† 

+q�↑ 
− (v�k 

∗u�k+q�)γ�k↑ γ −(�k+�q)↓
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since the largest contribution comes from the smallest energy excitations, which have energy 2Δ. 
In the �q → 0 limit, however, p�k,�k+q� → 0, which gives 

0 
Rµµ(ω = 0, � q → 0) −→ 

2Δ 
= 0 (9.34) 

Inserting this into the expression for the total current response tensor Kµν , we get 

2 2ne ne 
Kµν (ω = 0, � q → 0) = Rµν (ω = 0, � q → 0) + 

mc2 
δµν = 0 + 

mc2 
δµν (9.35) 

Thus in a superconductor, the diamagnetic current survives in contrast to the cancellation that 
occurs for a normal metal As a result, in this limit at T = 0 

2 

��j � ne 
A� (9.36)= − 

mc2 

This is a curious result, as the specific form of A� is gauge dependent. In fact, the result is 
only true in the London Gauge in which � · A� = 0. How did this choice of gauge creep into our 
derivation? 

It is possible that the gap Δ depends on A�. In this case, we would have to solve a new self­
consistent BCS equation in the presence of the altered form. According to rotational invariance, 
any correction to Δ must take the form 

Δ = Δ0 + �c A� (9.37)· 

where �c is some vector relevant to the system. In the present case, the only relevant vector is �q. 
By choosing the London Gauge � · A� = 0 we ensure that q� A� = 0, thus guarantying the validity · 
of the result just derived. 

9.2 BCS Diamagnetism at Finite Temperatures 

At finite temperatures T > 0, the quasiparticle state populations will in general be nonzero. Thus 
we expect all four terms of equation (9.30) to contribute to the matrix element in (9.7). Pulling 
all of these terms together, we get 

Rµµ(q, ω� ) = 
m

e2

2 

� � 
kµ + 

q

2 
µ 
�2 

−2 �� 
2 
k,�k+�q E

f

�k 

(

− 

E�k

E
+

�k

q� 

+

) 

q� 

−
− 

f

ω 

(E

+ 

�k) 

iη 
(9.38) 

�k 

2 
f(E�k+q�) + f(E�k) − 1 f(E�k+q�) + f(E�k) − 1 

+ p�k,�k+q� ω − (E� + E� ) + iη 
− 

ω + (E� + E� ) + iη k k+�q k k+�q 

If we now let ω = 0 and take the limit �q → 0, p�k,�k+q� → 0 as before, but ��k,�k+q� → 1 since 
|u�k|

2 + |v�k|
2 = 1. This yields 

� � 
kµ 

�2 
∂f 

Rµµ(q� → 0, ω = 0) = −2 e 2 

m ∂E� 
= 0 � (9.39) 

�k k 

Although the paramagnetic current response at finite temperature is nonzero, for low tem­
peratures (kB T/Δ � 1) its contribution will be exponentially small and will not be sufficient 
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2 neto fully cancel the London diamagnetic current mc We can measure the degree to which the 2 . 
system retains its superconducting diamagnetic behavior by writing the total current response in 
terms of an effective “superfluid density” ρs(T ): 

ρs(T )e2 

Kµµ = − 
mc2 

(9.40) 

In this “two­fluid” picture, 

ρs(T ) = ρs(0) − ρn(T ) (9.41) 

where ρn(T ) is the “normal­fluid” density due to excited quasiparticles at temperature T . It 
is these excited quasiparticles that are responsible for the non­superconducting aspect of the 
system’s behavior at finite temperatures. According to these definitions, we can identify � � 

kµ 
�2 

∂f e2 

Rµµ(�q → 0, ω = 0) = −2e 2 

m ∂E� 
= 

mc2 
ρn(T ) (9.42) 

�k k 

Near T = 0, the superfluid density behaves as ρs(T ) ∝ e−Δ/kB T . Near the critical point, we 
get the mean­field result for the order parameter ρs ≈ |Δ(T )|2 ∝ (Tc − T ). As the temperature 
is raised from 0, the increase in quasiparticle excitations and decrease of the energy gap work 
together in a sort of “runaway process” to kill the superconductivity. 

9.3 Superconductors with Vanishing Gaps 

Although the BCS ground state only involves a thin skin of electrons near the Fermi surface, all 
electrons participate in the diamagnetism proportional to ne2/mc2 . Thus an energy gap is not 
essential for superconductivity. In fact, there are many examples of gapless superconductors. 

If fixed magnetic impurities are present, then electron­impurity scattering can break up BCS 
pairs through the spin­spin interaction. Due to impurity scattering, there is a finite density of 
states at the Fermi energy. The system can still be superconducting, however, with a significantly 
reduced superfluid density ρs. The net effect is that magnetic impurities reduce the critical 
temperature Tc. 

Additionally, there are superconductors for which the gap Δ depends on direction (i.e. Δ = 
Δ(�k)). Along some directions {�k�} the gap may vanish. Such directions are called nodes. For 
d­wave superconductors, Δ(�k) ∝ cos 2θ, which has four nodes at θn = (2n + 1)π/4. Nonetheless, 
superconducting behavior is still observed. 

9.4 Coherence Factors 

In addition to the coherence factors ��k,�k+�q and p�k,�k+q� that arose in our consideration of the 
BCS matrix elements of the paramagnetic current operator, there are several other analogous 
coherence factors that arise from the consideration of the matrix elements of other operators. 
These coherence factors are ubiquitous in problems involving superconductors. 

9.4.1 Ultrasonic Attenuation 

One such example is the calculation of ultrasonic attenuation in a superconductor — what is 
the lifetime of a phonon sent through a superconductor? In a normal metal, the phonon can 
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7 Coherence Factors 

scatter an electron into a higher energy state, affecting a so­called particle­hole excitation. At 
T = 0, however, the lack of any quasiparticles and h̄ω < Δ imply that there is no way for the 
system to absorb energy from the photon. As T increases and the normal­fluid density increases 
as well, absorption is possible and phonon attenuation increases monotonically to the normal 
metal value at T = Tc. 

In this situation, the relevant operator is the electron­phonon coupling 

c�k+�
c�k,σ b�q + b 

q,σ 

† †
−q (9.43) 

By substituting the relations for c� and c�k,σ in terms of the Bogoliubov quasiparticle 
q,σ k+� 

creation/destruction operators, a different set of coherence factors is obtained. 

9.4.2 Nuclear Spin Relaxation Rate (1/T1) 

Another interesting effect to examine is the longitudinal relaxation rate for a magnetic nucleus 
embedded in a metallic sample. The interaction has the form 

HIS = AÎ� Ŝ� (9.44)· 

†

where Î and Ŝ are the nuclear and conduction electron spin operators, respectively. 
One effect of electron­impurity scattering is that a conduction electron can undergo a spin­

flip and be sent outside the Fermi sphere. If there is an electron spin­flip, the magnetic nucleus 
must also undergo a flip of its own. Thus relaxation of the magnetic nucleus is expected. 

If the calculation is carried out, one discovers the Korringa Law 

1 
kB T T1 

= const (9.45) 

for the normal metal state. 
Below Tc, the relaxation rate rises to a maximum before decaying away to 0 as T 0.→

This peak is called a Hebel­Slichter peak, and results from the small enhancement of the density 
of states near the gap edge that makes up for the loss of density in the gap region. It is a bit 
surprising that a similar peak is not observed for the phonon attenuation. However, the coherence 
factors that arise in the ultrasonic attenuation calculation exactly cancel this effect, giving rise to 
the observed monotonic behavior. For more on this topic, see the books by Schrieffer or Phillips. 
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