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Lecture 4

3.1 Thomas-Reiche-Kuhn or f-sum rule

Motivation :- One can derive following equation for one partice energy levels
> 2m(w, — wo)|(n|£[0)|* = 1 (3.1)

Proof -

1= —i(0[[z, pl|0)
1 = > {0z[n){n[p|0) — (0[p|n)(n|z|0)

p = im[H, 7]
= (n[pl0) = im(w, —wo)(0|E|n)
=1 = > 2m(w, — wo)|(n|2|0)?

One can extend the above formalism to condensed matter systems. As wave functions
are extended, position operator becomes unbounded for an infinite system. Thus we use
density operator instead of position operator. Final equation that can be obtained would
be

> (e —0)|(nlpf|0)* = N¢?/2m (3-2)

One can see that for localised states, exp(iG.7) — 1+i¢.7 And two sides of above equation
look reasonable. Consider,

(Ol[[pg, H1, 3110) = D~ (Ew — Eo)[(nl 0} + D= (B — Eo)[(mlpglO)P  (3.3)

n

By time reversal symmetry, eigenfunctions of hamiltonian ¢,,, are real. Thus,
MIghlo) = [ d*réy Y exp(iar) g
a0y = [ dron Y exp(=igr)oo

= (nlpgl0)
=ng® = 2mY (B, — Ep)|(n|p}|0)|*



By using the expression for the fluctuation function one can rewrite the above expression
/ dwwS(q,w) = N¢*/2m (3.4)
0

In case of neutron scattering from phonons, r; represents the lattice position and m should
be replaced by the ion mass M.

3.2 Longitudinal f sum rule

Recall :-
D(q,w) = e(q,w)E(q,w)
V- -D(q,w) = 47pes
V- -E(qw) = 47p
Define,
eD = VUeg;t
eE = VU
Thus,
Uezt(q7w)
Ulq,w — =
@) = ~(qw)

From linear responce

n(qa w) = X(q7 W)Uea:t(qa w)

1 _ EH(q,w) _ U
EH(qaw) DH(qaw) Uezt
_ 14 dre? < n >
B q2 Ue:ct
1 4Ame?
=1+ x(q,w 3.5
€(q,w) ¢ (@) (35)

Now, imaginary part of dielectric constant corresponds to imaginary part of responce
function which is density correlation function. Thus from above equation we see that

Y duwl _ T
/0 e T 2

(3.6)

2



This is the longitudinal f-sum rule.
Define II that can be used for approximations,

n(q,w) = Il(q,w)U(q,w) (3.7)
Dy(q,w Ueat
i(@w) = Engq,wi: E
B Are? < n >
= 15
4mre?

= 1- qz H(qaw)
If we approximate II by Il for free fermions, we recover the RPA for ¢(q,w).

3.3 Conductivity sum rule

Ohm’s law and continuity equation can be written as,

ji(a,w) = o(q, w)Ey(q,w) (3.8)
V-j— eaa—:: =0

q-j(qw) +ewn(q,w) = 0
qj)(q, w) + ewn(q,w) = 0

Where E|/(q,w) is internal electric field.

de* < n >
- 1—
EH (q7 CU) q2 U
dre? <n >
= 1-1
¢ B
Ame j)
= 14—
! w EH
Hence we obtain the important relation :
4
€||(Q7w) =1+ TUH(qv w) (3'9>



Thus imaginary part of conductivity is related to real part of dielectric constant which
is in turn related to real part of response function. For large frequency limit one can

approximate the responce function as (w — w + i),

1 1
= 0 Da 2(
X zn:|< |pg|n)| w—En+E0+W+En_EO
R 2(En_E0)
0l 5-1n) 12
- Zn:|< ||| w2 — (B, — Eo)?
2 2(En — Fo)

= X 0lglm) P2

)

Where we have taken the limit of large frequency in the third step. Using the sum rule

3.2 we get
2
Woy
X — o2
Using equations 3.5 and 3.10 we conclude,
”
1 _p
daw) W
2
. - Whi
Jim e(qw) =1-—5
On the other hand from equation 3.9 we see that :
” —Ww ’
=—( —1
o (W)= (¢ 1)

In large frequency limit Kramers-Kronig relation can be written as

dw' o' (W)

o w

o (w) =—

Combining the last three equations one gets the desired conductivity sum rule,

| o) =2/

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



