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Chapter 1


Lecture 2: Scattering and the Correlation 
Function 

We ended the last lecture with a brief discussion of the connection between scattering experiments 
and measurements of the correlation function S(�q, ω). In this lecture we will discuss scattering 
in more depth in terms of two concrete examples (electron and neutron scattering). After that, 
we will look at some more general properties of response functions. 

1.1 Scattering 

The picture we have is of some blob of material, with a plane wave ki � coming in, and a different 
plane wave �kf � coming out. We define the momentum and energy transfer to the sample | 

Q = �ki − �kf (1.1) 
(1.2)ki 

− E�ω = E� kf 

Let �R be the coordinate of the scattering particle. Recall from last time that application of 
Fermi’s Golden Rule and the 1st order Born Approximation leads to the differential rate 

2 

φ0� ki )·R e−i� Rd� kf −�
R e i(

� q· 
→[f ] d

3kf = 2π ρ̂†q | δ (ω − (En − E0)) d3kf (1.3)Wi v�q �n|
qn 

= |v�
2 2π |�n|ρ̂† 2 δ(Ef − Ei)d3kf (1.4)

QQ| � |φ0�|
n 

= |v�
2 S( �Q| Q,ω) d3kf (1.5) 

(1.6) 

Q, ω) = |v�
2 S( �P ( � Q| Q,ω) (1.7) 

for scattering into a final state with momentum somewhere in a volume element d3kf of momen­
tum space centered on kf . Here, v�Q is the Fourier Transform of the interaction potential. The 

key result here is that the rate of scattering with momentum transfer Q and energy loss ω is 
directly proportional to the correlation function S( �Q, ω). 

2 
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Application: Electron Energy Loss Spectroscopy (EELS) 3 

1.2 Application: Electron Energy Loss Spectroscopy (EELS) 

The experiment we imagine here is that of shooting high energy electrons ( 100 keV) at a thin film 
of material, and collecting them as they emerge with an energy­resolved detector. For this case, 
the interaction potential is just the Coulomb interaction between the electron and the sample’s 
charge density, so 

4πe2 

v�q | = (1.8)|
q2 

Recall the definition 

1 UT ot = (1.9)
q, ω) UExt 

Uscr= 1 + (1.10)
UExt 

Remembering that Uscr (�q) = 4πe 2 
δn(�q), where n(q�) are the Fourier components of the 2q

density fluctuations, 

1 4πe2 δn(�q, ω)
= 1 + (1.11)

�(� UExt(�q, ω) q2 q, ω) 

As defined in the previous lecture, the (linear) density response function χ(�q, ω) is defined 
by the ratio 

δn(�q, ω)
χ(�q, ω) = (1.12)

UExt(�q, ω) 

1Substituting this into the relation for �(�q,ω) , we get 

1 4πe2 

= 1 + χ(�q, ω) (1.13)
q, ω) q2 

With χ��(�q, ω) defined as the imaginary part of χ, the relation 

S(� q, ω) (1.14)q, ω) = −2χ��(�

combined with equation (1.7) for the scattering rate into momentum space volume d3kf gives the 
following relation for the scattering rate in terms of the dielectric function: 

8πe2 1 
q, ω) = 

q2
P (� −Im 

�(�
(1.15)

q, ω) 

What useful information can we get out of this? For one, we are able to investigate the 
dielectric constant at finite values of �q (0 to kF ). In optical experiments, the vanishingly small 
photon momentum in comparison with typical electron/nucleus momenta means that we are only 
able to investigate the �q ≈ 0 regime with photons. 

On the downside, the best energy resolution we can achieve today is around 0.1 eV, which 
is far too coarse to obtain much useful information. This energy resolution is already 1 : 106 

when compared with the total electron energy of around 100 keV. To get around this, one might 
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Application: Neutron Scattering 4 

consider trying lower energy experiments. However, the problem with low energy experiments is 
that the probability of multiple scattering events within the sample becomes significant, leading 
to complicated and messy results. 

With EELS, we can also look at high energy excitations of the electrons in a metal. Recall 
that there is a high energy collective mode of the sample electrons at a frequency equal to the 
plasma frequency ωpl. The plasma frequency is defined in terms of the zero of the dielectric 
function 

q, ωpl) = 0 (1.16) 

The situation where the dielectric function becomes zero is interesting, because it represents 
a singularity in the system’s response to an external perturbation: 

1 UT ot = (1.17)
q, ωpl) UExt 

Thus even a tiny perturbation at the plasma frequency results in a large response of the system. 

1.3 Application: Neutron Scattering 

Since neutrons are uncharged, they do not see the electrons as they fly through a piece of mate­
rial1 . The dominant scattering mechanism is through a contact potential with the nuclei of the 
sample 

2πb 
V (�r) = δ(�r) (1.18)

Mn 

where b is the scattering length and Mn is the mass of the neutron. Since the Fourier transform 
of a delta function in space has no �q dependence, the Fourier components of the interaction 
potential are all simply 

2πb 
v� = (1.19)q 

Mn 

Inserting this into equation (1.7) for the scattering rate, we get � �22πb 
Q, ω) = S( �P ( � Q, ω) (1.20)

Mn 

Here, S( �Q, ω) is the correlation for the nuclear positions (density) 

Q, ω) = dt e iωt� ˆQ(t) ̂ Q(0) �T (1.21)S( � ρ� ρ − �

with 

ρ̂� = e Q· �i � Ri (t) (1.22)Q 
i 

1 The can interact, however through spin­spin magnetic interactions. 
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5 Application: Neutron Scattering 

where { �Ri(t)} are the coordinates of the nuclei at time t. Now we can substitute this in to the 
expression for S( �Q, ω): 

Q·Rj (t)e Q· �� i � R� (0) S( �Q, ω) = dt e iωt � e−i � �T (1.23) 
j,� 

To make progress, we must put in a specific form for �Rj (t). We consider the case of small 
distortions from a Bravais lattice: 

Rj = R0 + �� �
j uj (1.24) 

R0 uj } are small displacements. The {�where { � j } are the Bravais lattice sites, and {� uj } can be 
expanded in phonon coordinates, yielding � � 1 � 

i(� �
q (t)) + ˆ e−i(� �

q (t)) (1.25)uj = �λα � ˆq e q·R−ω� a† q·R−ω�
q2NMω�

a�
qα �q 

where the sum over α is a sum over all phonon polarizations, �λα is the polarization of the αth 

mode. 
After some algebra (see problem set), it can be shown that this decomposition yields ⎡ ⎧ 

S( � Q − �
2NMω� ⎩ q + 1) δ( � G)δ(ω − ω�(1.26)Q,ω) ∝ e−2W ⎣ δ( � G)δ(ω) + 

� Q2 ⎨ 
(n� Q − q�− � q )

�
q

� q �Q G ⎫⎤ � ⎬ 
+ n� δ( � G)δ(ω + ω�

⎦ 
q Q + q�− � q )⎭ 

G 

where W is the Debye­Waller factor, and n� is the Bose statistical occupation factor. q 

There are several interesting features about this expression for the correlation function. The 
first term corresponds to simple elastic Bragg scattering through a momentum transfer �Q. Even 
in the presence of fluctuations, this term is still a sum of delta function peak. Thus the effect of 
fluctuations on the Bragg peaks is only to decrease their amplitude via e−2W , and not to induce 
any broadening. 

The 2nd and 3rd terms give rise to peaks at ±¯ qhω� arising from the emission/absorption of 
a phonon with wave vector �q. Note that each of these terms is multipled by a prefactor Q2 . 
Because of this prefactor, it is possible to experimentally achieve enhancement of the phonon 
emission/absorption peaks by looking at large �Q scattering. Because the crystal momentum is 

G, Q is allowed to run outside of the first Brillouin conserved only up to a reciprocal lattice vector � �

Zone. Thus very large values of � Q hidden the Q are possible. However, there is a dependance on �

Debye­Waller factor, which kills this enhancement for large Q2 

1 22W =
3 
Q2� uj � (1.27) 

1 Q2 � 2n� + 1 
= q (1.28)

3 2NM ω�
α,�

q
q 

2The expectation value � uj � in this expression represents the mean square fluctuations of 
the nuclei from their ideal Bravais lattice positions. These fluctuations result in the overall 



6 Application: Neutron Scattering 

suppression of both elastic and inelastic scattering peaks. Furthermore, as noted above, the 
Bragg peak delta functions are not smeared out by thermal fluctuations. 

In the low temperature limit, we can employ the Debye model2 to evaluate the sum in 
equation (1.28). This gives 

3 Q2 

2W as T 0 (1.29)→ 
4 M ωD 

→ 

which is the damping due to zero­point fluctuations. 
For kB T � h̄ωD , the Bose factors n�

kB T . In this case q → h̄ωD 

Q2 

2W =
2M ω2 kB T for kB T � h̄ωD (1.30) 

D 

which comes from the fact that at high temperatures, the mean square fluctuations are propor­
tional to kB T according to the equipartition theorem. 

In two dimensions, we get an interesting result. Using the fact that (for an “infinite” sample) 
there are phonon modes of arbitrarily small frequency, we can approximate the numerator of 
equation (1.28) with kB T . Using the Debye relation ω� = v|�q|,q � kB T� 2n� + 1 q 

ω�
≈ 

ωq 
2 (1.31) 

�
q

q � �q � kB T /¯ 1hv 

≈ kB T d2 q
v2q2 

→ ln(0) (1.32) 
0 

which is logarithmically divergent. Thus 2W is infinite for a 2D crystal. Although this would 
seem to imply the complete disappearance of the Bragg peaks, a more careful calculation reveals 
that the Bragg delta peaks are actually broadened to a power law. 

What is the reason for this strange behavior? The answer is that in two dimensions, thermal 
fluctuations are sufficiently influential that they can destroy the long­range order of a crystal. If 
you imagine nailing down a single nucleus to be used as the origin of a Bravais lattice, then at 
large distances the mean positions of the nuclei will not be described by lattice vectors for a 2D 
crystal with thermal fluctuations. Because of this, some authors claim that there is no such thing 
as a 2D crystal. 

However, we may ask a different question about our material to judge its crystallinity. Is 
orientational order preserved at long distances? Imagine nailing down two adjacent nuclei at 
their equilibrium separation, with the line connecting the two nuclei oriented along a particular 
direction. Far away from these two nuclei, are similar bonds still parallel to this one? The answer 
is yes, bond orientation is preserved over large distances for a 2D crystal3 . In this sense, it still 
does make sense to speak of a two dimensional crystal. 

2 Recall that in the Debye model, the phonon dispersion relation is assumed to be linear for all q�.

3 In order to exhibit a change in bond orientation, it is necessary for a dislocation, or topological defect to be

present.
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