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8.512 Theory of Solids II Problem Set 5 Due March 17, 2008 

1. This problem reviews the Boltzmann equation and compares the result with the Kubo 

formula. For a derivation of the Boltzmann equation, read p.319 of Ashcroft and 

Mermin. 

(a) Consider an electron gas subject to an electron field 

→→→ 
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 =E0 e 
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→ →
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The Boltzmann equation in the relaxation time approximation is
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where f0 is the equilibrium distribution 

1 
f0(ǫ) = (3) 

eβǫ + 1 

Write 
→→→ 

f(r , k , t) = f0(ǫk) + Φ( k )e i 
→
→

q · r −iωt (4)


→→ 

and work to first order in Φ( k ) and E. Show that the conductivity is given by
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where ê is the unit vector in the direction of E0. 

(b) A simple way to derive the Kubo formula is to compare the energy dissipation 

rate σE0
2 with the rate of photon absorption. At finite temperature, we need 

to include both absorption and emission processes. Show that for free electrons 

(including spin) 
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α,β 

(6) 

Using the Kramers-Kronig relation, show that the complex conductivity is 

→→ →
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(c) For |q| ≪ kF , show that Eq.(7) reduces to Eq.(5) under the assumptions that 

|α >, |β > are plane waves and η is identified with 
τ 
1 . 

→ 

2. Equation (5) in Problem 1 is valid for any relation between q and ê. In an isotropic

→ 

material the response can be separated into the longitudinal ( q � ê) and transverse

→ 

parts ( q⊥ ê). The latter is appropriate for the propagation of electromagnetic waves. 

(a) For T ≪ ǫF , show that the transverse conductivity can be written as an integra­

tion over the Fermi surface. 

3 1 1 − 2σ0→ x

σ⊥(q , ω) =
 dx (8)


1 − iωτ 4 −1 1 + sx 

where 
iqvF τ 

s = (9) 
1 − iωτ 

In Eq.(8) σ0 = ne2τ/m is the DC Boltzmann conductivity and the integration 

variable x stands for cos θ in an integration over the Fermi surface. 

(b) The integral in Eq.(8) can be done analytically. For our purposes, find the small 

|s| and large |s| limits. The small |s| limit is the Drude conductivity while the 

large |s| limit is called the “extreme anomalous region.” It describes the situation 

when the electron mean free path ℓ is much greater than the wavelength of light. 

Note that it is reduced from σ0 by the factor 1/(qℓ). Produce a simple argument to 

show that this reduction factor can be understood on the basis of kinetic theory of 

classical particles. (Hint: Consider a low frequency transverse electromagnetic 

wave. For qℓ ≪ 1, all the electrons can absorb energy from the electric field. 

However, for qℓ ≫ 1, only a fraction travelling almost parallel to ê can do so. 

The argument was first given by Pippard.) 




