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All right. Then let's go back to our discussion of what happens to classical and
quantum mechanical magnetic moments when they are exposed to magnetic fields.
I just want to remind you of what we did last class and what we want to wrap up

today. This is rapid adiabatic passage.

| mentioned to you and explained it to you that rapid adiabatic passage is a powerful
way to manipulate a classical and quantum system, and what we discussed is that
when a spin points in the up direction and you sweep the resonance of an oscillating
magnetic field-- the frequency of an oscillating magnetic field, through the
resonance, you create an effective magnetic field in the moving frame which will
rotate. And the atom, when the change is done adiabatically, will follow the rotation
and therefore invert the spin. So it's a perfect, very robust method to invert

population in spin systems.

What | want to pick up today is the question, how slow is adiabatic. We have to fulfill
an adiabatic condition and we have already an idea already of what the adiabatic
condition is but now we want to derive it. That we had this picture of a spin which is
rapidly precessing. It always precesses around the direction of the effective
magnetic field, and the condition adiabadicity is that the rotation of the effective

magnetic field has to be much slower than the precession.

Let me just make it clear by a counter example. If the atom precesses around the
magnetic field and the magnetic field would suddenly jump, then the atom would
now start precessing about the new direction of the magnetic field and it would have
completely changed its angle relative to the magnetic field. It would have lost its
alignment with the magnetic field. So you clearly see that the condition is the
direction of the magnetic field must not jump, and the only other time scheme is the
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frequency of the Larmor precession, so our condition for adiabadicity is the rotation

of the effective magnetic field has to be slow compared to the precession frequency.

And so we want to now derive from that condition the conditions for adiabadicity.
And just as an outlook to make it interesting, what | will derive for you in the classical
picture is now something which you will later encounter as the Landau-Zener
parameter. But Landau-Zener sweeps, we talk about it later today is a quantum
mechanical version of rapid adiabatic passage, but we now get classically a result,

which will feature the Landau-Zener parameter.

So with that, let us write down what we want to look at. It is adiabatic condition, and
to write it down in words is that the Larmor frequency, omega L, which is given by
the effective magnetic field, has to be much larger than theta dot. Now things in
general are rather complicated. If we are far away from resonance, you change the

frequency, but the effective field is not changing a lot.

The critical moment is really when we have the real field, we add the fictitious field
and that cause a rotation. The critical moment is when we are near resonance. So
in other words, we have to fulfill an inequality. The left side has to be larger than the
right side, but the left side is actually smallest in the vicinity of the resonance, and
the angle theta dot is actually largest near resonance. That's when it sort of quickly
goes to 90 degrees. So therefore, if we want to find the condition of adiabadicity, we

can derive it by looking at the region around the resonance.

So the effective magnetic field is the real field minus the fictitious field caused by the
rotation by the transformation into the rotating frame. So we have the magnetic field
at an angle theta with respect to the z-axis. I've just written down the z component
for you, and the transverse component is-- so this is this component and the

transverse component is the amplitude of our drive field B1.

So we can just read it form the diagram. The resonance data is 90 degrees, and the
correction angle is whatever we have of the effective z field over B1, and that
means that the derivative, the angle theta dot, the angular velocity at which the

magnetic field rotates, there's a time derivative because we sweep the frequency.



So therefore, theta dot is nothing else than omega dot, the sweep rate of the

frequency divided by gamma B1.

But gamma B1 is nothing else than the Rabi frequency. And on resonance, the
Larmor frequency is just a Rabi frequency, because on resonance-- sorry for
repeating myself-- the fictitious field has canceled the bias field, and the only field
left is the rotating field, but the rotating field is the Rabi frequency with a gamma

factor.

So therefore, we have the adiabatic condition that omega dot over omega Rabi has
to be smaller than omega Rabi or to say it inverts the change delta omega of your
drive frequency, the change delta omega in one Ravi period has to be smaller than
the Rabi frequency. So omega has units of frequency. Omega dot is a derivative
that's in units of frequency squared, and this is to be smaller than the Rabi

frequency squared.

You find that actually quite often if you do an adiabatic change of your trap
frequency, things are adiabatic as long as the change of the trap frequency in one
period of the trap frequency is smaller than the trap frequency, and you find
something else that the derivative of your trap frequency has to be smaller than the
trap frequency squared. So these are adiabatic conditions, when you tighten up
magnetic or optical confinement for atoms. So this is very, very genetic. The small
rate of the frequency you change has to be smaller than the relevant frequency

squared.

As | said, we come back to that when we do the quantized treatment of rapid
adiabatic passage and we encounter that combination in the Landau-Zener
parameter, which takes us to our next topic. We want to now talk about quantized
spin in a magnetic field. And one of the first things | will be telling you is that
everything we have learned about the classical magnetic moment you don't have to

unlearn or re-learn, it exactly applies to the quantum spin.

Before we look at the Hamiltonian and the standard Hamiltonian for two-level

system, let us first look at something more general, which is Heisenberg equations
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of motion. So we want to write down the differential equation, the equation of motion
for expectation values. So for an atom in a magnetic field, our Hamiltonian is simply
the same Hamiltonian, which involves the gyromagnetic ratio, the angular

momentum operator, and the magnetic field.

And you know from quantum mechanics that Heisenberg's equation of motion for
any operator are simply that the time derivative of the operator equals the
commutator with the Hamiltonian. In some cases, if you have an explicit time
derivative of the operator, you have to edit, but we are talking here about the

angular momentum operator which has no explicit time dependents.

So we are interested in the operator which describes the magnetic moment, but the
magnetic moment is nothing else than the gyromagnetic ratio times the angular
momentum. So therefore, the relevant commutator is the commutator of the

Hamiltonian with the angular momentum operator.

Just to remind you, the Hamiltonian was proportional to z. So what we are talking
about is commutators, not surprisingly, between the angular momentum operators
and those commutators are just this cyclic commutation involving the epsilon tensor.
So if you just put that in component by component, you realize immediately that the
operator equation for the time derivative of the magnetic moment is nothing else
than the cross product, the vector product, of the operator of the magnetic moment
times the magnetic field. To commence, this is exact, but also it looks exactly like

the classical result.

Well, you would say it's an operator equation. Usually operator equation some of
them are pretty useless because you can't calculate the operators, but in this case,
we can immediately take the expectation value, so we can get some immediately
meaningfully equation namely that the expectation value follows the same equation,
and this tells us that whenever we have a quantum system, it has a magnetic
moment. In an applied external magnetic field, the result is simply rotation,
precession, and this is exact. It's not a classical approximation. It's an exact result

for quantum mechanics.



AUDIENCE:

So the way how we derived it makes it obvious that it's an exact result, which is valid
not only for spin-1/2, but it is valid for any spin. If you have a magnetic moment
corresponding to a spin of 10 H bar, this spin follows the same equation of motion
as spin-1/2. Of course, a special case is valid for spin-1/2, but spin-1/2 is
isomorphous to a two-level system. Any two-level system can be regarded as spin-
1/2 system, therefore, this geometric interpretation that the dynamics of the
quantum system is just a precession rigorously, exactly applies to any two-level

system.

It's also valid, and this will be relevant for atoms, if we have composite angular
momentum. For instance, we will encounter the total angular momentum F of an
atom which has components from the orbital motion of the electron, the spin of the
electron, and the spin of the nucleus. But if we have such an angular momentum, F,

the creation of motion is it will precess around a magnetic field.

Well the small print here is, unless the B field is so strong that it de-couples the
components or that it breaks up the coupling of the different parts of the angular
momentum. In other words, we have simply assumed here that magnetic moment is
gamma times angular momentum, and that requires that the angular momentum
are coupled in a certain way. If we don't fully understand what coupling of angular
momentum is, we really talk about that when we talk about atomic structure. So as

long as the spin state coupled to one total spin, this total spin will just precess.

This picture of precession will also be valid for a system of N two-level systems
coupled to an external field, and this will be the example of Dicke superrradiance,
which we will discussed towards the end of the course. So very simple result, but
very powerful, and this is your permission whenever you encounter any of the

systems to see a vector precessing in your head. This is exact.

So we've talked about Heisenberg equation of motion for general spin, but-- you

have a question, Nancy?

What did you mean by N two-level systems here? Are we talking about coherent

systems or non-coherent systems?



PROFESSOR:

We talk about in two-level systems and to be more specific the coupling comes
because they all talk to the same magnetic field. So we have in two-level systems
connected to the modes of the electromagnetic field. We start with the symmetric
state. The coupling is symmetric and that preserves the symmetry of the atomic
state. In other words, we will have a situation where the angular momentum is the
maximum angular momentum we can get in two-level system, and the dynamics of
this two-level system, the description of Dicke superradiance has the geometric

visualization of this precessing motion.

I know I'm not explaining it exactly. | want to sort of whet your appetite for what
comes later and also sort of prep you that some of the simple pictures will really

carry through the course.

OK, so this is for very general spin. Let's now talk about features of, yes, the most
important spin for us, namely the two-level system, which is spin-1/2. Well, the most
generic system is an electron in a magnetic field B times ez. And well, why don't we

start with a clicker question.

So the question is, what is the level structure of the electron in the magnetic field?
It's a two-level system, and you have two options A and B. One option is the upper
state is spin up. The ground state is spin down or the opposite. So in other words,
and tell me whether an electron is in the lower state when the speed is up or when
the spin is down. You would say it's a stupid definition, but we talk all the time about
an electron is in the spin down state or the spin up state, which is the lower energy

state of the electron.

So | think by exchanging the better recent number of responses has considerably
gone up. OK. The answer is the electron is in the ground state. Spin down is the
lowest state for the electron. To say it in words, of course, a compass needle wants
to be aligned with the magnetic field. So you want the magnetic moment to be
aligned with the magnetic field, and that means the magnetic moment has to point
in the plus e direction, which up but the electron has negative charge, the gamma

factor is negative, and that's why for the electron, the vector of the spin and the



vector of the magnetic moment are opposite.

So just try to find some main-mode technical thing. The electron lives in the
basement. It wants to be down, spin down. This is the lowest state for the electron.
However, if you have a system which has a positive gyromagnetic ratio, which would
correspond to, well, positive charge, nucleus if it has somewhat normal magnetic
moment, then in that case, the spin up state is less energetic than the spin down

state.

So let me just write that down. So the correct answer is this one, and it involves that
gamma is negative. The gamma is a gyromagnetic ratio, the ratio between
magnetic moment and angular momentum, and for negative charges, it's negative.

For positive gamma, the situation is inverted.

So let's just use for a moment the result we got from Heisenberg's equation of
motion. We know the classical result. We have already derived for the classic spin,
the classical result for the expectation value of the magnetic moment. But now |
want to sort of relate it to something quantum mechanical because we know that the

classical solution equals the quantum mechanical solution.

So if you have a two-level system, the z component of the magnetic moment is the
difference between spin down and spin up. And because of conservation probability,
p up and p down is unity, we can also write that as 2 times-- let me now introduce e
for excited state, just | know it's hard to keep track of spin up, spin down. | want to
make sure that | mean now the excited state, so the excited state for the electron is

spin up.

So we have this condition, so therefore, the excited state fraction of a two-level
system is related to the expectation value of the magnetic moment in that wave, and
now we want to use the classical result we derived. We derived the classical result
when for t equals 0 all the spins were in the ground state, and by using the result we
derived previously, we have the 1/2 from the previous line and then the magnetic
moment, mu z. We found an expression which involved the Rabi frequency, and the

off resonant Rabi frequency are sine square generalized Rabi frequency times time
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over 2.

So the two factors of 1/2 and 1/2 cancel, and what we find now for the quantum
mechanical system using Heisenberg's equation of motion is that if you prepare a
system initially in the ground state, the excited state probability, the fraction, the
excited state oscillates with a Rabi frequency, and this is, | think, the second time in
this course and not the last time that we see the Rabi, that we obtain, the Rabi

transition probability.

But let's go further. We have now discussed the classical spin. We have sort of done
classical quantum correspondence with Heisenberg's equation of motion. We know
that this in general, it implies Rabi oscillations, but now we want to go deeper into
the quantum domain by talking about the spin-1/2 Hamiltonian. So in other words,
we want to go beyond expectation values. We want to talk about the wave function

itself.

So the Hamiltonian, which we will use for major parts in this course, it's one of the
fundamental Hamiltonians in physics. Of course, there's the harmonic oscillator.
There is a hydrogen atom, but then there's this Hamiltonian, which is a two-level
system with splitting omega naught. And then we make, which is often a
simplification, where we use a pure exponential, so a single frequency in complex

notation where the complex exponential e to the i omega t is the drive term.

So this is one of the simplest Hamiltonian for this kind of system. It's a two-level
system with a splitting, and now it is driven and the simplest drive term is not cosine
omega t or sine omega t as we will see. The simplest drive term is e to the i omega
t. So this is now our Hamiltonian. and since it is so important, let me ask you a
clicker question whether this Hamiltonian can be exactly realized in nature or it is an

approximation.

For instance, that you always have cosine omega t as a drive, and cosine omega t
is e to the plus i omega t and e to the minus i omega t. And then maybe with the
rotating wave approximation, you throw away a term. So | sort of wanted to ask you,

is this an idealization that we have a coupling which is a simple, complex



AUDIENCE:

AUDIENCE:

PROFESSOR:

exponential, this nature always more complicated or is there a simple way to realize

this Hamiltonian in nature? So what do you think?

Stop display. What's funny about that?

Equal to.

There are two [INAUDIBLE].

Oh, they couldn't make up their mind. The system should reject those votes.
Anyway, it means most of you anticipate what | want to derive to you that we can
actually exactly get this Hamiltonian and indeed, this is the Hamiltonian | will derive
for you in the next few minutes, which is the Hamiltonian of spin-1/2 in a magnetic

field coupled to a rotating magnetic field.

So we start out with fields which are real, real field, no imaginary numbers, no
complex numbers. These are real fields, but when we write down how the real fields
couple to spin-1/2, we get e to the i omega t and e to the minus omega t without any

approximation.

So since at least 80% of you know the result, just regard it as an exercise to
introduce how we spin matrices in a nice way, also this will help you how to do pre-
set number 1. So the Hamiltonian is the spin coupled to a magnetic field, and if we
express that by angular momentum operators, the gyromagnetic ratio it involves the

operator for the spin in the z direction.

So the two-level system has a splitting of H bar omega, so it's plus 1/2 minus 1/2 H
bar omega, and that means the diagonal part, the non-driven part is simply given by
the Pauli spin matrix sigma z and omega naught is the energy splitting, which is
proportional to the applied magnetic field. And up-down, and excited and ground
are the eigenstates of this Hamiltonian with energies plus minus H bar omega

naught over 2.

So this is the same Hamiltonian, but now add a real rotating B field B1. So the drive
Hamiltonian H1 is the same magnetic moment but now coupled to a time-dependent
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rotating field. The amplitude of the rotating field is the Rabi frequency divided by
gamma, and we assume that the field is rotating in the xy plane. So it's ex ey cosine

omega t sine omega t.

And now | put in two minus signs here for convenience. If you want, I've just shifted-
- it's just a definition. I've changed the definition of the amplitude by a minus sign.
So this is the Rabi frequency, and the magnetic moment divided by gamma is
nothing than the spin. Magnetic moment is gamma times the spin, so therefore, we
are back to the spin operators and the spin operators, if | factor out 1/2 H bar, are

now the Pauli spin matrices sigma x and sigma y.

And if you look at those spin matrices, then you'll realize that we go complex in our
Hamiltonian, not because we have approximated a real field cosine omega t by
some e to the i omega t, but because when we have a rotating field and we write

down it in Pauli spin matrices, we get imaginary units form the sigma y spin matrix.

So that means we have now for this system rewritten the coupling term took you to
the rotating field H1 as 0 0 e to the plus i omega t e to the minus i omega t. And
therefore, the Hamiltonian is the famous two-level Hamiltonian with omega naught

and the Rabi frequency, which | wrote down at the beginning of this chapter.

So we'll leave that here, but we will use it even more in 8.421. This is the famous
dressed atom Hamiltonian. It is the starting point to calculate eigenstates and
eigenvalues, not just in perturbation theory. You can go to oscillating fields at
arbitrary strengths, so you can solve exactly in the dressed atom picture using this
Hamiltonian, the problem of a two-level system plus one mode of the
electromagnetic field no matter what the drive term, what the strengths of the

electromagnetic field in the spin mode is.

So this describes the two-level system plus one mode of the electromagnetic field
with arbitrary strengths. And as | said, we talk about some things here but others |

explored in 8.422. Questions? Yes, Will.

We refer to the eigenstates and eigenenergies of this Hamiltonian as dressed in
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states in the same way as we refer to address states in a fully quantized fiction? Do

we refer to both cases as dressed states?

Yes. That's a good question. The question is now, what are the dressed states, and
Will, | think you are referring that there are two ways to talk about the coupling of a
two-level system to one mode of the electromagnetic field. It is this same classical
picture where we introduce and let me say an analog amplitude of the
electromagnetic field which drives it. And then there is a fully quantized picture
where you first quantize electromagnetic field and you couple to photon number

states.

Actually the beauty of it that the two solutions are exactly the same. So in other
words, how to say, if you couple an atom to one mode of the electromagnetic field.
We have two ways how we can solve it. One is, we introduce a coherent
electromagnetic field, and there is an exact unitary transformation which tells us if
we have the quantized field in a coherent state, we can do unitary transformation,

and what we get is exactly this Hamiltonian.

So therefore, this is also-- you may not recognize it-- this is actually the quantum
description of the electromagnetic field when it is in a coherent state. The other
option is, we use the dressed atom picture maybe following some work of
[INAUDIBLE] and others where we assume this single mode of electromagnetic field

has in photons, and then we solve it for this photon number state.

So in other words, these are the two ways how we can relatively, easily treat the
problem. Either we assume the quantum field is in a coherence state or it's in a flux
state. But since the dressed atom picture in the standard way assumes that the
photon number, N, is large, there is a correspondence that in the limit of N of N

being large, the flux state description and the coherent state description fully agree.

And you pick what you want. If you introduce the electromagnetic field explicitly with
it's quantum state, you get the dressed atom picture as a solution of a time
independent problem, whereas here with a coherent state description, the coherent
state oscillates, cosine omega t, with a time-dependent problem. And actually |

11
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should say whenever | get confused in one picture, I look in the other picture and it
becomes clear. | generally prefer where we have N photons, it's because we can
discuss everything in a time-independent way, but for certain intuitive aspects, this

is also variable, so in the end, you have to learn both.

And in your homework, you will actually write down the general solution for this

Hamiltonian as an exercise. Nancy.

I think I'm confused a little bit. So in the flux state picture, the dressed states can be
exactly part of an independent matter of coupling between a lesser photon on any

excited state. So like we can write eN as 1 and g or something like that.

Yeah. You couple a photon field with N photons and energy in H bar omega to N

minus 1 H bar omega.

But in this one, is there like a direct photon number thing, because we haven't

quantized the field yet? So what do the dressed states mean at this point?

Well, the fact is that if you start out with a coherent state, your photon field is not in
photons, it's a laser beam. The laser beam or the coherent state is in a quantized
description, a superposition of many flux states. So therefore, the number of
photons in a coherent state fluctuates or has a large Plutonian statistics, and if you

take one photon out or not, it doesn't make a big difference.

For instance, for those of you who know how the coherent state is state defined, the
coherent state is defined as when you act on the coherent state with an annihilation
operator, you get the eigenvalue times the coherent state. So that tells you you
have a fully-quantized description of your laser in terms of a coherent state. You

take one photon out and what you get? the same state back.

And this may immediately justify that what we write down here is simply the
coherent state with its amplitude and the amplitude of the coherent state would be
B1, the amplitude of the drive field. And we don't really need other states because a
coherent state has the property. You to take a photon out and you still have the

same state. So therefore, we don't have to keep track of the coherent state. It's
12



there all the time.

But what I'm saying can be formulated more exactly when we use the appropriate
formulas. But this is sort of the bridge. That's why we do not have to keep track of
the photon state. It's because the coherent state has those wonderful properties.

Other questions?

OK. So this is the famous Hamiltonian. And of course, if it's the famous Hamiltonian,
we want to solve it. As | said, the general solution is left to the homework, but | want
to sort of show you parts of the solution to tell a story. And the question is, well, how
do we solve this Hamiltonian? The answer is, we do exactly what we did in the

classical problem. We transform to the rotating frame.

In other words, this Hamiltonian is best solved by doing-- you can actually solve it
directly. You can just put in a tri wave function and solve it. But | want to sort of bring
out the big idea here which is analogous to what we have done in the last few

classes, namely we have involved rotating frames.

So what solves this Hamiltonian is a unitary transformation, and the unitary
transformation is this one. And so this unitary transformation, let me first write it
down, it transforms the Hamiltonian to the time independent one. We have now time
independent of diagonal matrix elements. Our diagonal matrix element have
changed. Delta is now the detuning of the tri frequency from the energy splitting of

the two-level system.

In particular, when we are on resonance, the diagonal matrix elements have
disappeared. This is the result of the unitary transformation, and let me just show
you this transformation over here. Can be actually written as an operator involving
the z component of the magnetic field. And what | just wrote down for you is actually
the quantum mechanical operator, the rotation operator for performing at rotation

around the z-axis.

So by selecting the rotation angle to be omega t, that's how | can generate the

unitary transformation, and this unitary transformation makes the Hamiltonian time
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independent. So in other words, everything is in the classical system. We just go to
a frame which rotates with a [INAUDIBLE], and we find the time-independent

problem. So now this Hamiltonian can be easily solved.

And you will find as a special case when you start with an amplitude, initially you
start in the ground state, then the excited state amplitude square is the Rabi
oscillation, something we discussed 40 minutes ago, but before, we got it from the
classical quantum mechanical correspondence using the Heisenberg equation of
motion and here it comes out by explicitly solving for the wave function for the

dressed Hamiltonian. Questions?

| want to say a few words now about rapid adiabatic passage, but this time by
emphasizing the quantum mechanical aspects. In other words, we have a clear
understanding what happens classically. We have a clear understanding what
happens in the adiabatic limit, but | just want to sort of in the next 10 minutes use
what we have already learned, combine it with the quantum mechanical Hamiltonian
and tell you that, well, when you are not fully adiabatic, you actually have transition
probabilities between the two states. So | want to sort of bring in the concept of
transition probabilities to the case of-- what | want to say is rapid adiabatic passage
when it's no longer adiabatic, but what this just means when we sweep the

frequency and we're not in the adiabatic limit.

So how do we describe it quantum mechanically? We start out with a Hamiltonian,
which has-- we use our rotating framework for convenience that allows to write
down exactly the same Hamiltonian in time-independent picture. So the Hamiltonian

has two parts, a diagonal part and an off-diagonal part.

So if | show the energy as a function of detuning delta-- well, maybe | should times
2 over H bar, just normalize it so then it becomes just the straight line at 45 degree
y equals x. So the unperturbed-- the Hamiltonian without drive has a level crossing
at detuning 0. Then we add to it the drive term. Well, let me just write down, not the

drive term but the full Hamiltonian.

So the full Hamiltonian with the addition of the drive term has delta minus delta and
14



now it has the coupling with the Rabi frequency. That means that on resonance, the
degeneracy between the two levels is split by the Rabi frequency, and if | now show
you the energy eigen levels of this two-by-two Hamiltonian, it will asymptotically

coincide with a dashed line through this and through that.

So in other words, I'm just reminding you that a non-diagonal matrix element turns a
crossing into an avoided crossing. So when we take the frequency omega and we
sweep the detuning, so we change delta and do a sweep of the frequency omega at
a rate omega dot, then we sweep through the resonance and in one limit, we have
rapid adiabatic passage or in general, we realize the Landau-Zener problem of a

sweep through an avoided crossing.

So what I'm formulating here is it's the so-called Landau-Zener crossing or the
Landau-Zener problem, which is the quantum mechanical description of you take a
system by changing an external parameter. Here, we sweep the frequency of the
rotating field, but by changing the external parameter, we sweep the system

through the avoided crossing.

And it has the two limiting cases that when we go through this crossing very, very
slowly, the adiabatic field then tells us we stay on one of these adiabatic solid
curves, and this is the case of rapid adiabatic passage, which we discuss in the
classical limit. But it is also the other solution if you would sweep through it very,
very fast, you're in the diabatic limit, you follow the dashed line and you start up

here and you wind up there.

The Landau-Zener problem is actually a problem which you find it in all it text books,
but to the best of my knowledge, there is no simple, elementary derivation which |
could give you in a few minutes. And if the mathematical problem is a nice,
mathematical demonstration of an exact, solvable model, but to my knowledge
explicitly deriving it is not providing additional insight. It's one of the cases where the

result is more insightful and much simpler than the derivation.

So what | want to give you is, therefore, simply the textbook result. So in the

adiabatic limit, you stay on the solid line. If you do not cross the avoided crossing
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very, very slowly, you'll have a non-adiabatic probability to jump from one level to
the other one. And this non-adiabatic probability is expressed as an exponential
function which involves the Landau-Zener parameter. And the Landau-Zener
parameter in this exact solution is omega Rabi squared times this new rate, d

omega dt or d delta dt minus 1.

This square should go outside the brackets, so therefore, what we find is from the
exact solution that the Landau-Zener parameter is a quarter times-- and this should
now look familiar, the omega Ravi frequencies squared over omega dot. And when
we discussed the limit of adiabaticity classically, | hope you remember | gave you
the argument by looking at the adiabatic condition that the adiabatic case requires
omega dot to be much smaller than omega Rabi squared. So here very naturally
what appears in the quantum mechanical problem is just the ratio of the two

quantities we compared when we looked for the limit of adiabaticity.

So therefore, the probability for a non-adiabatic transition is simply involving this
ratio omega Rabi squared over omega dot. So in other words, we know already
from the classical argument, but here we confirm it, adiabaticity require that this

inequality is met.

OK, | could stop here, but since we are using sort of diabatic sweeps in the
laboratory, as long as I've been involved in doing quote "atom science," | want to
sort of go one step further and teach you a little bit more about this formula and try
to provide insight, and often insight is also provided when you apply perturbation
theory. So | know the adiabatic case is very simple, but | want to look at the diabatic

case and then look at transition probabilities in a perturbative way.

This is actually the way how we often transfer population in the laboratory. So | want
to understand better the way how we transfer population from one curve to the
other one. So if we do a fast sweep, we call it diabatic. So in other words, if we have
this crossing and we go really fast, well, what happens is this is the crossing

between spin up and spin down.

If you go much, much faster than the Rabi frequency, the spin has no opportunity to
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change its orientation. So therefore, the wave function, the spin has to stay up or
down and that means the system just goes straight through the crossing. Because
spin up has positive slopes, spin down has negative slope. Being adiabatic, staying
on this lower adiabatic curve would actually require the system to go from spin up in
this part of the adiabatic curve to spin down in the other part. And to flip a spin
cannot be done faster than the Rabi frequency, so if you sweep fast, that's what's

happening.

So we have two trivial limits, one is the adiabatic limit or just the adiabatic curve and
nothing happens. The other limit is the infinitely-fast limit and nothing happens again
when we look at the diabatic basis, which is spin up and spin down. But now let's be
almost adiabatic, and this is a problem which we really want to understand
physically and intuitively because that means the system spins the small timelier

resonance, and there is a small probability to make a transition.

So if you had one of your hyperfine states, pick your favorite hyperfine state, you'll
rapidly sweep the frequency. You will find, unless you sweep it infinitely fast that
there's a small probability in the other hyperfine state. And that's what you want to
calculate now, and | want you to understand how would you estimate and calculate

the small probability.

So let's now estimate the result, namely for the small probability in perturbation
theory. And actually what I'm calculating for you here is, if you've used evaporation--
| know half of the class is doing that-- if you apply an i F field, you don't have to
make it so strong that you and the adiabatic limit. You are exactly in this limit. The
atom will slosh several times through the resonance in an almost diabatic way, but

there is a finite spin flip probability and that's how you evaporate atoms.

And | want you now to fully understand the derivation, what is the probability of
ejecting atoms in the almost diabatic limit with i F spin flips. That's a limit where 90%
of the BEC experiments operate. So | hope everyone realize it's an important
question and also | hope everybody understands the question because now | have

bigger questions for you.
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The first question which | will ask you, should we calculate that transition probability
by using perturbation theory for an incoherent transition or for coherent transition?
Let me just explain you what | mean and then | ask you for your opinion.
Coherently, we simply say in perturbation theory, we start with our population in
state 1. We have to do the coupling Hamiltonian time dependence of the population
in state 2 and that means if we integrate this equation for a short time, we find an
amplitude a2. And the probability to be in the state 2, which is the amplitude
squared, is proportional to the Rabi frequency squared times the effective time

squared, the effective time of tribing the system.

Coherent processes are always quadratic in time. If we do it incoherently, well, the
way how we describe incoherent processes are Fermi's golden rule, which we've all
seen. And the probability in Fermi's golden rule is very different. Well, it is
proportional to the Rabi frequency squared, to the matrix element squared, but
Fermi's golden rule gives us a constant rate, and for constant rate, the probability is
rate times time. So now it is linear in time and then because of the delta function in
Fermi's golden rule-- I'm missing a symbol so | use gamma here. It has nothing to

do with the Landau-Zener probability. This is just the density of states.

So | hope you know now what is the difference between coherent or incoherent.
The most important part is that things are linear in time for an incoherent pulses

rate equation and at least for small times quadratic in time for coherent pulses.

So now we come to this process where we take atoms from spin up to spin down.
We evaporate with a weak, course, almost adiabatic with weaker f drive, so we are
closer to the diabatic limit. And so if you think about this problem, | want you to tell
me if this process, the perturbative transition close to the diabatic case is that
should we use when we apply perturbation theory, the coherent picture or the

incoherent picture.

In other words, is the dynamics of the quantum system, when we go relatively
quickly for the Landau-Zener crossing, is that a coherent or an incoherent process?

| could see where it doesn't matter, but it does matter. So | think it's an open
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question.

Let me give you the answer. It is coherent, and you can see it in the following way.

What is the source of incoherent here? We have a Hamiltonian.

The Hilbert space is by two-by-two. There is no coherence which can be lost. There
is no spontaneous emission to other states. There is no reservoir. We don't have a
small system which couples to a bigger system, and then the small system-- we do
that on Wednesday-- has to-- tomorrow, Wednesday-- has to be described by
density matrix. We have the none of the physics which would give arise to

incoherent physics. It is coherent.

But maybe I'm oversimplifying. Is somebody who said it's incoherent who wants to
maybe press me harder and tell me why you think it is incoherent. Well, one
possibility is-- and this is why we often use Landau-Zener sweeps in the lab. We

have fluctuations of the resonance frequency.

And when we go and sweep through it, we don't know exactly when we hit the
resonance. And if you would take an ensemble of systems and you go through the
resonance at different times, you will get an ensemble of wave functions, which has
different phase factors in it, and in the end, you will actually need a density matrix to

describe it.

But this is now an experimental imperfection which | haven't assumed here. So in
other words, what you should do is the following. Whenever you sweep through
Landau-Zener crossing, you start with the ground state and what you get out is a
superposition of ground and excited state. And the Hamiltonian determines
absolutely every aspect of the amplitude in the ground and the excited state

including all phase factors.

In other words, if you do a Landau-Zener crossing in a way that you prepare 50-
50% of the atoms, they are always face coherent and you can use this process as a

beam splitter in an atomic thermometer. Fully coherent.

We have five minutes, so if we assume now, | hope we all agree that the amplitude
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is obtained in this coherent wave, then, of course, the question is, but what is the
effective time? When we sweep the resonance, we are far away. Nothing happens.
Nothing happens. Nothing happens. We go through the resonance, everything
happens. Nothing happens. Nothing happens. Nothing happens.

So this is the effective time when the wave function really changes and we create
the coherent and mixture in the second state. And it is this effective times squared
which determines what happens, what our transmission amplitude is. So therefore,

the question is, what is the effective time in the Landau-Zener crossing?

| can give you three choices. One is, the effective time is, well, we change omega
and the effective time is, how long, what is the time until we have a detuning, which
is equal to the Rabi frequency. Another possibility is that the effective time where we
coherently drive the system is 1 over the Rabi frequency, just the Rabi period. Or
another choice, how | can construct time out of the two frequencies where it's

omega Rabi and omega dot. These are our two elements.

So another possibility how | can get time is, omega dot is frequency squared, and
the square root of 1 over omega dot at least fulfills the dimensional criterion that this
is time. So my question for you is, what do you think is the effective time during
which we drive the system coherently? | have to tell you before | made up the
problem, | do not know the answer. But | can also tell you that there is only one

answer which is correct.

All right. | have to say | expected A to be the correct answer, but | convinced myself
it's only B. And the answer is the following, and | know | have to stop, but I only
need three more lines. The effective time is not the time until you are detuned, the
effective time is which | can call the dephasing time, the time during which

everything is coherent.

What happens is, we change the frequency delta omega, and the delta omega is, of
course, omega dot times delta t. So if we change the frequency by sweeping it in
such a way that we are detuning and now with that detuning, if we let the system

evolve, we would get a phase shift of pi. That's sort of the maximum where
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everything adds up coherently.

If we would go longer in time, the frequency has changed to the point that what we
add to the amplitude of the other state is no longer in phase to what we have added
before. You can sort of look at it like this. You have a little bit of phase a2, You build
up. You build up. You build up by adding amplitude with the same phase. But now
you are sweeping, and this is the criterion where you start to pile up things with the
wrong phase and then the phase eventually becomes randomized and you're not

effectively contributing.

This equation defines the window delta t during which we effectively add substantial
amplitude in the second state, and it involves delta t squared, so neglecting factors
of unity, the result of this is that, indeed, delta t is 1 over omega dot plus. And
indeed, if we say the probability for coherent drive is Rabi frequency squared times
delta t squared, what we now obtain is the Rabi frequency squared over omega dot,

and this is our Landau-Zener parameter.

So in other words, if we check with the exact result, the Landau-Zener probability, 1
minus p non-adiabatic-- the Landau-Zener problem is e to the minus 2 pi over
gamma or gamma pi over 2 over the Landau-Zener parameter, if | do an expansion
of the Landau-Zener parameter for a small value of the exponent, the exact result is
2 pi times gamma, and this is indeed proportional to omega Rabi squared over

omega dot.

So in other words, what I've shown you is that coherent time evolution with this
weird effective time, what | motivated physically, exactly that produce the limit of
small gamma from the exact result for the Landau-Zener crossing. OK. | know time
is over. Any questions? OK. So today was officially our Monday class, so we meet

again tomorrow, the same place, the same time.
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