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PROFESSOR: OK, let's get started.

Last class, which also means last week, we discussed what happens when atom are

exposed to external fields.

Well, you would say, isn't it enough if you understand atoms in isolation?

Well, not quite. Because whenever we want to talk to the atoms, whenever we want

to manipulate them or find out in what states they are, we have to apply external

fields. The way how we communicate with atoms is through electric, magnetic, and

electromagnetic fields. And therefore, we have to understand what happens to the

structure of atoms when we expose them to such fields.

We started out with structure in magnetic fields. And if I just show you this picture,

this is what we discussed last week. However, I noticed that our discussion with the

different coupling cases-- fine structure plus magnetic field, hyperfine structure,

strong fields, weak fields. I noticed that when I was teaching, it's a lot of details and

it looks a little bit messy. So what I want to do, therefore at the beginning of today, is

I want to give you sort of a summary that you see the bigger picture. That you see

beyond the details, that what I actually taught you about atoms in magnetic field is

some paradigmatic example of quantum physics. What happens if you have two

different terms in Hamiltonian and you have to interpolate between one and the

other?

But before I do that, do you have any questions about magnetic fields, magnetic

structure? Well, then let's try to summarize as follows.

What we have is we have a Hamiltonian. And it has one part, the hyperfine
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interaction, which depends on I dot J. And then it has an external magnetic field

part. And what couples to the magnetic field, which we assume is in the J-direction--

in the z-direction are the z-components of the magnetic moment. And the z-

component of the magnetic moment are proportional to the mJ or mI quantum

number, to the magnetic quantum number, of the atom and the nucleus.

So in a weak field, it is the hyperfine structure which dominates. So in a weak field,

we first solve for the hyperfine structure. And then we use the eigenfunction of the

hyperfine structure. And the eigenfunction of the hyperfine structure have the

quantum number F where J and I have coupled to F.

And then we treat the magnetic Zeeman Hamiltonian perturbatively. And that led us

to the formulation of the Lande g-factor, gF.

The other case is the strong field case where the magnetic field dominates. Then,

we simply solve for the hyperfine structure in the magnetic field. It's one of those

rules in quantum physics, or in physics, or maybe even in life, first things first. You

should first take care of the big things. And this is now the magnetic field.

And since the magnetic field Hamiltonian is diagonalized when we have

eigenfunctions where mJ and mI are good quantum numbers, this is sort of-- if you

ignore the hyperfine coupling, this is the exact [INAUDIBLE] of the Zeeman term.

And then in perturbation theory, we look for the hyperfine coupling. And well, we do

perturbation theory in eigenfunctions with mI and mJ. And that means if you have

the I dot J term, it is only the component mI mJ which remains. So I've given you

those two cases.

Now, what you should also learn here in this example is the language which we use.

And sometimes, I would say, the language can be more confusing than the

equations.

What we say here is we say that the angular momentum of the electron and of the

nucleus are coupled to the magnetic field axis. They are quantized. The

approximate eigenstates are those which have a specific quantum number in the z-
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direction because the magnetic field points to the z-direction. So we're saying I and

J are strongly coupled to the z-axis by the magnetic field. And then we treat the

coupling of I and J with each other in perturbation theory.

Whereas in the previous case, we say I and J strongly couple. And when I and J

strongly couple, F becomes a good quantum number. And that means I and J both

precess around the axis of the total angular momentum f. And therefore, we say I

and J couple to F. And then we solve for this coupling of F to the magnetic field in a

second step. But I hope you see that there's two limiting cases.

We can exactly diagonalize one term, and then we perturbatively add on the result

for the second term. Of course, in the age of computers I could have simply written

down for you a Hamiltonian and said, well, it has to be numerically diagonalized.

What I discussed instead were the two limiting cases.

Now, this discussion now allows me to discuss what happens when we go to even

stronger fields. Well, when we go to even stronger fields, then we may have fields

which are even stronger than the fine structure coupling, the coupling of the orbital

angular momentum of the electron and the spin angular momentum to J.

And well, without even any deviation, which is obvious, you know what happens now

is that each component which provides magnetic moment-- the spin, the orbital

angular momentum, and the nucleus-- the dominant term for each of them is the

coupling to the magnetic field. So in strong magnetic fields, these are the

eigenstates. The eigenstates are labeled by mI, mL, mS. So we have taken care of

the strong coupling term.

And now in addition, we are now treating in perturbation theory some fine structure

coupling, but the quantum numbers are already distributed, mL, mS. There is a

coupling become between mI mS and a coupling between mI and mL. So this is sort

of the limiting cases.

But as a general illustration of quantum mechanics, I thought this was a nice

example for a Hamiltonian where we have different scalar products, like B times S,
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B dot L, S dot L, I dot J. And the question is, how do we take care of those different

parts because they do not commute?

Of course, the theorist would just say, I simply diagonalize it and that's it. But if you

want to develop intuition, then you have to discuss the limiting cases.

And in particular, the approach which allows an intuitive understanding is first things

first. And we first treat the stronger terms and then the weaker terms. And we can

quantitatively derive, analytically derive expressions, for instance, for the Lande g-

factor in this vector model.

This vector model assumes, so to speak, that a state which has an eigenfunction of

mJ rapidly precesses around the z-axis. And this vector model actually allows you to

do easy calculation without Clebsch-Gordan coefficient. So the concept of the vector

model is rapid precession for transverse components and projecting of vectors onto

the axis around which you have rapid precession. But this is simply a tool to do

calculations without the explicit use of Clebsch-Gordan coefficients.

OK, so this is what I wanted to tell you about atoms in magnetic field. Any

questions? OK then, we can actually move onto atoms in electric field.

But before we do that, we should have some clicker questions about atomic

structure and atoms comes in external magnetic fields. So get out the clickers.

So the first questions take us back to electronic structure. It's a question about, how

do wave functions, how does density, and how does inverse size scale with principal

quantum number?

So the first question is, how does 1/r, 1 over the size of the electronic wave function,

how does it scale with n? 1/n, 1 over n squared, 1 over n cubed.

OK.

OK, yes. It's 1 over n squared. But I would have hope that 100% of you would know

it because 1 over is the Coulomb energy. The Coulomb energy is 1/2 of the total

binding energy because of the Virial theorem. So when you see 1/r, there should be
4



a flash in your head which says energy. And Rydberg energy is 1 over n squared.

The energy levels of hydrogen are 1 over n squared. OK.

Yeah, next question. How does psi 0 of 0 square, how does the density of the

electron at the origin scale with principal quantum number? 1/n, 1 over n squared, 1

over n cubed, or 1 over n to the sixth?

OK, yes, very good. So what I try to remind you here is that there are two different

radii. There is one radius which scales with n squared. But if you calculate the

density at the origin, if you would say, well, r scales with n squared. The volume

scales with n to the sixth. And then you would say the density scales with n to the

minus 6, you're wrong.

And we had a discussion that there are two different lengths case in the hydrogen

atom and in hydrogenic wave function. One scales with n squared and the other

ones scales with n. And therefore, the density at the origin is n to the minus 3.

Good. Next question, from hydrogen to helium. In helium, for the same electronic

configuration, , are singlet or triplet states more tightly bound?

So we talked about a shift or splitting between singlet and triplet states. Which way

does it go?

You want to try again? For the same electronic configuration-- the ground state has

only one configuration. It has only one state in the ground state. But now we go to

the excited state, to the excited states, and there are a number of excited states

because they have the same configuration, but they can be classified by singlet and

triplet states.

OK, we are converging. It is the triplet state. Some people are confused when they

think about molecules. usually, in molecules the singlet state is more tightly bound

than the triplet state.

But the magic word is for the same electronic configuration. You can have one

orbital filled with two electrons only in a singlet state because of the Pauli exclusion
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principle. It is only in the first excited state or in an excited state of a molecule or of

the helium atom that you have two orbitals, 1s and 2s. And you can now put the

electrons in with the same spin or with opposite spin.

So usually, it's only in an excited state that the question singlet versus triplet arises.

And then in the excited state manifold, the triplet state is lower because it has a

symmetric spin wave function and anti-symmetric spatial wave function. OK, the

next question.

OK, so we understand now there's a difference between triplet and singlet state in

excited states for the same electronic configuration. And the question is, what is the

origin of the energy which is splitting the singlet from the triplet state? Magnetic

energy, spin-spin interactions, or electrostatic interactions?

Yes, the Coulomb interaction is electrostatic interactions. We discussed the singlet-

triplet splitting and the structure of helium without any magnetic or spin-dependent

interaction. All we had is the Coulomb interaction.

And in the triplet state, which is the symmetric spin state, the spatial wave function

has to be anti-symmetric. In the singlet state, the spatial wave function has to be

symmetric. And the symmetric and the anti-symmetric spatial wave function have a

different Coulomb energy.

So the spin through the anti-symmetry through the Pauli exclusion principle

determines the symmetry of the electronic wave function. And it is then purely the

Coulomb energy. That's why the singlet-triplet splitting is so big. Because it's not

magnetic, it's Coulomb in origin.

OK, next question. Which interaction reflects-- oops, maybe you want to still read it.

Which interaction reflects that the potential between nucleus and electron is not

exactly a Coulomb potential 1/r? We've usually discussed Schrodinger equation,

hydrogen, Bohr model for an exact 1/r potential. But then we discussed a lot of

phenomena. And I want you to figure out now, which of those choices mean, in

essence that you do not have a 1/r potential?
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OK, we have three choices. So the volume isotrope effect, I think, is a no-brainer, is

trivial. It means explicitly that the nucleus is not a point, has an extended volume,

and that means inside the nucleus the electron is not experiencing a 1/r potential.

So it's clear that C is always correct.

The Lamb shift is actually causing a deviation from a 1/r potential because-- well,

both the vacuum polarization and the-- well, you can go ahead and say, the fact that

we have QED, that we have other modes of the electromagnetic field mean that

there's a deviation from the 1/r potential.

The interesting question is the Darwin term. And the people who clicked D included

the Darwin term. That's a little bit trickier because I explained the Darwin term as

Zitterbewegung, as this trembling motion of the electron which smears out the 1/r

potential. So you would think coming from the non-relativistic Schrodinger equation,

that there is an effect which is smearing out the 1/r potential.

On the other hand, the Zitterbewegung, the Darwin term, is just one term which is

included in the Dirac equation. And the Dirac equation, which includes fine structure

and relativistic energy corrections and the Darwin term is an exact relativistic

formulation of the 1/r potential.

So in other words, I would say the correct answer is E. The people who included the

Darwin term, I would say the Darwin term is not a deviation of the 1/r potential

because it's simply a way to explain what is the result of the Dirac equation.

The Dirac equation uses exactly the 1/r potential without any corrections. So you

can say that if you want to understand the relativistic solution to the 1/r problem, you

include a term which in the non-relativistic equation slightly changes the Coulomb

potential. Questions about that? OK.

Fine structure. The fine structure affects only states with L equals 0 through a

coupling term L dot S. Is this statement, the way how it is written, true of false?

I would say it's false because the fine structure has three contributions-- the Darwin
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term, the relativistic kinetic energy contribution, and this L dot S term. And it effects

all states, also the S states, through the Darwin term and the relativistic energy

contribution. So the fine structure is more than just an L dot S term.

Next question is for L equals 0, the orbiting electron creates a magnetic field. And

spin orbit interaction can be simply regarded as the energy of the electron's spin in

this magnetic field. Would you say that this sentence is true or false?

I thought it's true, but maybe people want to tell me what is false about the

statement? Maybe the first sentence people did-- tell me, the orbiting electron

creates a magnetic field. Yes.

AUDIENCE: I said false for this because I normally would picture that from the electron's frame

of reference, the nucleus creating a magnetic field is the magnetic field

[INAUDIBLE].

PROFESSOR: OK, the second part, that there is a magnetic field and it's been orbiting the action is

the energy of the electron spin in this magnetic field is probably generally accepted.

But the first question is, does the orbiting electron create the magnetic field?

Well, we have the two options. We can say the electron moves and in its own frame

there is a v cross e term. And therefore, magnetic field. So we can say that the

electron's motion creates a magnetic field in its own frame for the relativistic

transformation. So in that sense, it is correct. but I would also side with you that

there is an alternative view of saying in the electron's flame, the nucleus rotates

around the electron. And it's the nucleus which creates the magnetic field. In the

end, it's the relative motion between the two.

Well, isn't it a good thing that we are not giving scores on that? So yes, if you want,

you everybody can feel that you have given the right answer.

Oh, yeah. In Dirac-- that should be easy, but it's just a warm-up question for the

next one-- which states are degenerate in Dirac theory? And you have a few

choices. That should be easy.
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Yeah, it's the S 1/2 and P 1/2. Dirac theory does not lift the degeneracy between

states with the same J, 1/2 and 1/2. But between 1/2 and 3/2 states, there is,

actually, the fine structure splitting, which we've just discussed.

OK, the next question is, what effects lift now the degeneracy between the 2 S 1/2

and the 2 P 1/2 term?

OK, we have three candidates-- the Lamb shift-- well, the Lamb shift is famous and

the Lamb shift was discovered because it splits the degeneracy between the two.

QED corrections have different effects on S 1/2 and P 1/2. The size of the proton

does also shift it, because the size of the proton-- the volume effect is more

important for S states than for P states. Maybe the question is, does the mass of the

proton lift the degeneracy?

No, it doesn't. It would just mean if your nucleus has a finite mass, you simply have

a two-body problem with a reduced mass, which is different from the bare mass of

the electron. But nothing else is changed, no degeneracies. It's as if the electron

has a different mass, which is the effective mass. So the correct answer here is D.

OK, four more questions. And this is about hyperfine structure.

So the question is, what-- well, hydrogen in the ground state has four states.

Because the electron has a spin up and down and the proton has a spin up and

down. And 2 times 2 is 4. So we're talking about multiplicity of 4. And I'm asking you

now about the limits of high and low field. First at high fields, then at low fields. And

the question is, what are the magnetic moments of those hyperfine states? And we

neglect the nuclear magneton compared to the Bohr magneton. So what are t

magnetic moments of those hyperfine states in units of the Bohr magneton?

Oh, yeah. What happens at high magnetic fields?

Remember, at high magnetic fields, this is actually the simpler case. Often, you

think the low magnetic field is simpler because it connects more with the isolated

atom. But you should take away the message that high magnetic fields are simple.

Because in high magnetic field, each spin couplets to the magnetic field by itself
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because the coupling to the strong magnetic field-- that's the definition of a strong

magnetic field-- is stronger than the coupling of the two spins with each other.

So the problem I'm giving you is that you have an electron spin which can be up and

down and it couples to the magnetic field. And then we have the nucleus spin, but

the magnetic moment of the nucleus is so small that we neglect it. So what are the

possibilities now?

Well, we have four states of hydrogen at high magnetic field. Two have the electron

spin up, nucleus spin up/down. Two have the electron spin down. And then when

the nucleus spin is up or down in those two states. So all the states at high magnetic

fields have either the electron spin up or the electron spin down. So therefore, the

correct answer is A. We have two states where the electron spin is up and two

states where the electron spin is down.

It's just a complicated way of asking you, what are the possible energy levels of an

electron in a magnetic field? And the answer is, well, plus-minus 1 Bohr magneton

times the magnetic field. Questions about it?

OK. Now, we go to the more complicated case, to low magnetic fields. And again,

same question. What are the magnetic moments of those hyperfine states?

So you have four states. The number of states, of course, doesn't change. That's

the dimension of our Hilbert space. But now we are at low magnetic field, and what

is the magnetic moment, which is nothing else than the derivative of the energy with

respect to the magnetic field?

Yes, the correct answer is B. We have two manifolds, one is F equals 1, where one

slope is 0 and one slope is plus-minus 1. And then we have an F equals 0 state. So

it is 1, minus 1, and 0, 0. OK.

Let's now make it more interesting. Let's replace the proton by a positron, the anti-

particle of the electron. So now we have a similar situation, but what happens now

is, of course, the contribution to the magnetic moment form the nucleus, which is

now the positron, is as important as the contribution of the electron. So you have
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two spin 1/2's coupled now. One is positive, one is negative. And you should figure

out again, what are the energies?

But before we talk about the energies, let's first talk about, how many hyperfine

states do we have in the ground state-- 1, 2, 3, or 4?

Yes, we have four states because we have two particles-- positron, electron. Each

of them has spin up, spin down. 2 times 2 is 4. And therefore, we have now four

states. And the question is again, at high and low magnetic fields, what are the

magnetic moments of those states?

So we have four states-- spin up, spin down-- of the electron and the positron. And

the question is, what are the magnetic moments of those hyperfine states?

D is correct. We have 1/2, spin 1/2. If the two couple like up-up and down-down, we

have the maximum spin. But since one particle is positive, one is negative, when the

spins are aligned, the angular momenta are anti-aligned. And therefore, the

magnetic moment is 0. So when they couple parallel, the magnetic moment is 0.

When they couple anti-parallel, the two magnetic moments of one Bohr magneton

each add up, and we have either 2 or minus 2 as the magnetic moment. Any

questions?

Then finally, the last question. Same situation, positronium, but now at low magnetic

fields. What are the magnetic moments of the four hyperfine states of positronium at

low magnetic field?

All right. Let's discuss it. What is the structure of the ground state at low magnetic

field? What is the good quantum number at low magnetic field?

AUDIENCE: F.

PROFESSOR: F. It's hydrogen. It's like hydrogen. 1/2 and 1/2. If we have an S of 1/2 of the

electron, the I of the positron is also 1/2. And 1/2 and 1/2 couple to F. And what are

the values for F?
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F equals 1 and F equals 0. OK, what is the magnetic moment of the F equals 1

state?

In order to get F equals 1 out of 1/2 and 1/2, you have to align the spin of the

electron with the positron. So the F equals 1/2 state is the state where the two spins

are aligned. What is the magnetic moment or this state?

AUDIENCE: 0.

PROFESSOR: 0. How many states are in the F equals 1 manifold? What's a multiplicity of F equals

1?

3. Plus, minus 1 and 0. So we have an F equals 1 state which has angular

momentum but no magnetic moment, and it has a multiplicity of 3. So three states

have 0, 0 magnetic moment. In other words, you would expect an F equals 1 state

to have this kind of Zeeman structure. But because of the special situation in

positronium, the Zeeman structure is like this. There is no linear effect. It's a

quadratic effect. All three states start out with 0 slope because as long as the spins

couple to F equals 1 and we don't have a magnetic field messing up with the

coupling, the magnetic moment is 0. OK, now what happens in the fourth state,

which is F equals 0?

In the fourth state, which is F equals 0, the two spins couple in an anti-parallel way.

So now, what is the magnetic moment when the two spins couple in an anti-parallel

way?

The spins subtract. But because of the different charge, plus and minus, the

magnetic moments would add up. That's what we just discussed in the high field

case. So you would think the F equals 0 state has a magnetic moment. But in an F

equals 0 state, it cannot point anywhere because the angular momentum is 0. And

therefore, in a most trivial way, this is hydrogen and this is positronium.

So positronium has four hyperfine states. And the slope of all four, for the reasons

discussed, is all 0. So sorry, A is the correct answer, without any ambiguity this time.
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OK. Any questions?

OK, then let's talk about atoms in electric field. We start out in-- we put the atoms in

a uniform electric field. Again, we assume that it points in the z-direction and its

magnitude is epsilon. And we want to ask, what is the electrostatic energy in this

electric field?

And we are using the fact that electrostatic energy can be expanded in a multi-pole

expansion. We have a monopole term, we have a dipole term, and we have a

quadratic term.

So the charge, of course, is-- the atom, itself, is a neutral atom. So there is no

monopole term.

The linear term in the electric field would correspond to a permanent dipole

moment. And I will remind you in a moment that this is 0. And then the term which

provides us with a stark effect, with the energy shift of atoms in electric field will be

the third term here, which is characterized by the polarizability alpha. And it

corresponds to an induced dipole moment. That there is an induced dipole moment,

which is alpha times epsilon. And then the induced dipole moment interacts with the

electric field. And that gives then, epsilon times epsilon-- epsilon squared. So this

would be a classical multi-pole expansion.

And we will now derive results quantum mechanically. The perturbation operator for

us is the dipole operator. And that could, in principle, include a permanent or an

induced dipole moment. So it would take care of the second and third term, the

dipole operator and its projection on the z-axis. So the dipole operator is the charge

of the electron times the position.

And as long as the polarizability and the situation is isotropic. A minus sign. Minus E

is the charge. If you apply an electric field in the z-direction, all the relevant dipole

moments are in the z-direction. For anisotropic materials, you could have an electric

field in the z-direction and the dipole moment points at an angle, but we do not have

such a situation for our atoms.
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OK, so the operator is then simply charge of the electron, the z-coordinate times the

electric field. And this has o parity. And that leads us immediate to the result when

we have an atom in an eigenstate n and we ask, what is the expectation value of H

prime?

It is 0 because of parity. So the answer is, we have no permanent dipole moment

until we have degenerate energy levels. If n is a non-degenerate level, this matrix

element is 0 by the parity selection rule.

OK, now we want to do perturbation theory. So our perturbation operator is this.

And since we have the clickers, I just want to ask you two quick questions.

I will do the perturbation theory and I will explain everything, but maybe you want to

predict the result, which I want to derive in the next 10 minutes. And the question is,

what will we actually get for the expectation value of H prime? Will we get the

expectation value of the dipole operator times the electric field or will we get the

expectation value of the dipole operator times the electric field over 2? And the next

question would be the same, but what do we get for the total Hamiltonian? So these

are the questions.

I want to discuss with you in the next 10 minutes, simply using perturbation theory,

expectation values. Expectation values of the total energy each, not plus H prime.

But also, expectation values of the electrostatic energy, which is H prime. And the

question is-- I mean, you can say for dimensionless units, what we get is a dipole

moment times an electric field. And this is one of the situation where factors of 1/2

are not just bookkeeping. Factors of 1/2 really reflect interesting physics. And I want

to sort of highlight it by asking you, what would you expect what we get for those

expectation values when we solve for atomic energy levels in electric fields?

So we're discussing first question 1. OK, let's go to question 2.

OK. Anyway, now I know I'm not boring you with the derivation I want to give you in

the next 10 minutes. I want to give you the answer right away by drawing up

another problem where maybe the answer is more intuitive. And this is we have a
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mass on a spring with spring constant k. And now the equivalent to the electric field

which we switch on is-- we switch on gravity. And due to gravity, the object zags by

an amount delta z. So the question is, what is-- and delta z is like the dipole

moment. What is the gravitational energy gained by the object because it has fallen

down? It is zagging down due to gravity.

Well, I think you would agree that the answer is, it is mg times delta z. This is the

work done by gravity with a minus sign. So the expectation value of the perturbation

operator is minus mg times delta z. Or in electrostatic units, it's simply the dipole

moment times the electric field.

But what happens is the-- so this is gravitational energy. How much is the total

energy affected when we switch on the gravitational field?

1/2 of it, because the negative energy which is gained in the gravitational field, 1/2

of it is used to stretch the spring. 1/2 of it goes into the internal energy of the

system.

So therefore, the electrostatic energy H prime-- H prime is the operator of the

electrostatic energy. The answer here is A. But the total energy is B because part of

the energy is needed to stretch the spring. And as I want to show you, stretching the

spring is-- we admix to the ground state some excited state. This costs energy, like

stretching the spring costs energy. And this is responsible for the fact of which is

exactly 1/2.

Well, I could stop here. I think I've explained it all, but let's follow the usual-- the

standard approach. And let's do second-order perturbation theory and calculate the

energy, calculate the dipole moment, and see that everything is as we expect now.

So we want to do second-order perturbation theory. We know already the first-order

term is 0. This was a discussion about parity. And in second-order perturbation

theory, the state n has an energy, which is the unperturbed energy. And then in

second-order, we have the matrix element to all other states. We square it. We

divide by the energy denominator. We sum over all states m, but I make a prime
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here. Of course, we are not summing over the state-- we exclude n from the

summation.

And the prefactor here is electron charge squared times electric field squared. OK,

pretty much that's the resulting second-order perturbation theory. So this is the

energy and we want to relate the energy to the dipole moment. So the next step is

now we calculate d. and we calculate d from the first-order wave function because

we already get an effect in first order and everything here is about leading order.

So the expectation value of the dipole operator-- so we take the expectation value

of the dipole operator and we use the 0-th order, the unperturbed state, plus the

first-order correction. And we know already that the diagonal terms do not

contribute. This is a parity selection rule. So we get contributions from the course

term, which is n0 the dipole operator with n1.

So let's just suppress vectorial notation. We know everything is along the z-axis. So

we have the 0-th order wave function. Our operator is z. And now we have to write

down the first-order correction to the wave function. And the first-order correction is

the sum over all other states.

We make an admixture of the state m, and this admixture uses a matrix element.

And here, we have the energy denominator. So what we obtain is-- we have the

electron charge here from the dipole moment. We have the electron charge due to

the perturbation operator. So it's electron squared.

We have the electric field. And then, this is due to the admixture of the wave

function with the dipole operator. And now because we take the matrix element of

the dipole operator, we get another occurrence of the dipole operator. So therefore,

we do first-order perturbation theory, but we take the first-order result and ask, what

is the expectation value for the dipole moment?

And that means the dipole operator, or the perturbation operator appears twice.

And our result is as expected. Quadratic in the matrix element and it has this energy

denominator. So the definition is that a dipole moment is alpha times the electric
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field. So therefore, all that equals alpha.

And if you compare now the result for the dipole moment with the second-order

perturbation theory for the electric field, for the energy, we find-- here's a factor of 2,

but there is no factor of 2 up there. We find that the energy or the energy shift delta

En, it has exactly the same matrix element as the polarizability. It is-- yes. It is this,

1/2 alpha epsilon squared.

Since the perturbation operator, I'm just writing it down here, was dipole moment

times electron, that means that the energy shift is-- and this is what we expected

now, is 1/2 times the expectation value of the dipole moment times the electric field.

So now we have obtained with a quantum mechanical calculation the result. I told

you that the energy shift of the energy levels is 1/2 the dipole moment times the

electric field. Let me just redo the calculation in a way I like. And this is I want to

determine now the total energy, but sort the terms in a little bit different way.

So I want to know, what is the energy in our result? And what we do is we are

calculating the energy using our wave functions. We take the total Hamiltonian and

take the wave function.

So this leads us to three terms. One is the unperturbed energy. The unperturbed

energy, the energy contribution of the first-order correction.

This is the part due to H0. And the part due to H prime is simply the dipole moment

times the electric field. So the first part is, of course, simply the energy E0 times the

norm of the wave function n0.

For the second term, we use the first-order perturbation theory for n1. This is our

sum over m. Em minus E0. m H prime 0. Because n1 is on either side, this is the

amplitude of the state n1. We have to square it. And since we calculate what is the

expectation value of H0, we multiply with the energy Em.

OK, so we are done. We calculate the total energy. We get three terms. One is the

unperturbed energy, one is the dipole energy in the electric field, and one is the
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extra term, which I want to discuss. Actually, this term is the internal energy, which

would correspond to the stretching of the spring in Hooke's law.

Now, in order to show it to you explicitly, I want to use E0 equal 0 for the energy.

Because then this term is 0. I can neglect this. And one of the squares, 1 over Em

squared, cancels with the Em.

It confused me for a while. If I don't set E0 to 0, the result looks different. But what

happens is, if you do perturbation theory, there are certain issues with the

normalization of the wave function. And the wave function n0 has to be-- the

contribution if you look at the wave function in perturbation theory of a state, the 0-

th order wave function has an amplitude of 1. And this amplitude of 1 only changes

in second order.

So since I'm doing a second-order calculation here, I have to include those non-

standard terms. But I can also bypass it by setting E0 to 0, then the second-order

term in the norm doesn't matter. So in other words, if you set E0 to 0, you make

your life easier. If you do not set E0 to 0, you have to include some more terms in

your calculation.

But the result is-- just one second. But yeah, the result which I wanted to emphasize

is this one here. It is a positive energy. You can immediately inspect that t positive

energy is the dipole moment times the electric field over 2. This is exactly analogous

to the energy of the spring in the gravitational problem. So in other words, this is the

energy, internal energy, because we admix excited states to the ground state. This

crosses energy and it exactly accounts for the occurrence of the factors of 1/2.

Anyway, this is just the standard theory of the DC stark effect of the atomic

polarizability, but I put a little bit of emphasis on those factors of 1/2 and tried to

explain in greater detail the contributions to the AC stark effect-- to the DC stark

effect which come from the electrostatic energy and which come from the internal

energy. Questions? Yes.

AUDIENCE: Sure. I have a study question. What is allowing you to use non-degenerate
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perturbation theory? What's the operator that [INAUDIBLE]?

PROFESSOR: Well, I'm looking-- what allows me to do non-degenerate perturbation theory.

Well, I assume we don't have degeneracies. If you would go to very high Rydberg

states-- and actually, we do that not today, but on Monday-- we are looking at a

situation where the splitting between states of different L become so small that the

electric field mixes them.

Then, we have to do degenerate perturbation theory. And that means we get now a

linear term, linear stark effect, not a quadratic stark effect.

Here, I would say we are doing perturbation theory of the ground state. It's an S

state. It's not degenerate. Maybe your question is also addressing, but we have

multiple ground states. We have hyperfine structure.

However, the electronics-- the stark effect, the electric field does not couple to the

spin at all. So therefore, all the magnetic energies-- the hyperfine energies are

completely unaffected. And also, if we apply an electric field, all the hyperfine states

experience the same shift and there is no coupling between them. So also, we have

multiple ground states. We have hyperfine structure. It's a non-degenerate problem

because there is no coupling between the different hyperfine states.

In other words, the theory or the discussion of the DC stark shift is you have an S

state, you couple with an electric field, and there is no degeneracy in the S state.

Other questions?

Well, then we've talked about alpha. The only parameter which comes out of this

treatment is alpha. And now we want to discuss, how big is alpha? Or first, what are

the units of alpha?

Well, the units of alpha were-- you can go back to the second-order perturbation

result. But the units of alpha were the charge, time [INAUDIBLE]. This was the

dipole operator. It was squared. And in perturbation theory, we divided by energy

because we had an energy denominator.
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Well, we can write that as q squared over l times l cubed. But q squared over l is the

Coulomb energy. And therefore, when I'm interested in the units, the units cancel.

So therefore, we find that the unit of the polarizability, at least in [INAUDIBLE] unit or

atomic units, which I've chosen here, is simply the volume. The question is, what

volume?

Well, if you would calculate the polarizability for hydrogen, and simply make the

assumption that the only important matrix element goes from the S to the P state,

then we have a matrix element which is on the order of [INAUDIBLE]. And the

energy splitting between the first ground state and first excited state is three quarter

of the Rydberg constant.

So for hydrogen in the 1s state, if you only use the coupling to the 2p state, we find

that alpha is the Bohr radius cubed. And the prefactor is 2.96. If you do the

summation over all states, the prefactor would be 4.5 because there are higher

states, especially continuum states, which contribute to the sum.

We have only five minutes left, but that allows me to show you that this is not a

coincidence that we obtain-- here, what we obtain is the Bohr radius cubed, which is

pretty much the volume of the hydrogen atom. But we can now do an

approximation. It's not really relevant, but it has an historic name-- [INAUDIBLE]

approximation. It's just nice to show how things work out.

We have a second-order matrix element, so we couple the state n with the operator

z to a state m. But if we assume that all energy denominators can be taken out of

the summation by assuming that we have some kind of average excited energy,

then the sum of-- maybe I should have said it the sum m z n, which we sum over m

and it just cancels out.

So what we have is, if you take the energy, an average energy denominator out of

the summation, what we find is that what matters is the matrix element z squared.

And we can even assume that in the energy denominator, the excited state energy

is negligible. The hydrogen atom has a binding energy of 1 Rydberg and the first
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excited state has a quarter Rydberg. So at the 25% level, we can set that to 0. So

I'm waving all my hands, but I'm getting a simple expression for the polarizability in

the ground state. And this goes as follows-- the ground state energy is-- we have

discussed Coulomb energy, Virial's theorem, and all that. We need just 1/r in the

ground state. And for the z squared matrix element, we can simply say for an S

state that it is x squared y squared z squared. It is 1/2 of r squared in the ground

state.

So therefore, continuously waving our hands and making approximations, we find

that the polarizability is r squared expectation value divided by an r to the minus

expectation value. So this is some r cubed expectation value which is an atomic

value.

So you see the nature of the perturbation expression suggests that cannot be

anything else than the atomic volume. I sort of like that because when people

discuss, for instance in my group, does lithium or rubidium have a bigger

polarizability?

Well, the bigger atom has a bigger volume and the more fluffier atoms have the

larger polarizability. And that's pretty much based on that result.

Now, let me finally do a comparison. There is another system for which you have

done calculations of the dipole moment. And this is in classical E and M for

conducting sphere. For conducting [INAUDIBLE] electric field, you can exactly solve

the boundary conditions, the boundary value problem, get the electric field, and find

the dipole moment.

And the exact result is that the dipole moment is the electric field times the cube of

the sphere. So in other words, the dipole moment, or the polarizability of this

sphere, is-- and neglecting factors, which are only factors of unity. The dipole

moment-- sorry, the polarizability of a conducting sphere is the volume of the

sphere.

The dipole moment of a hydrogen atom, or using [INAUDIBLE] approximation for all
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simple atoms is the volume of the atom. So I find it sort of interesting that when it

comes to dipole moments and to polarizability, that atoms pretty much behave like

metallic-conducting spheres of the same volume.

Any questions? OK, then let's stop here and we meet again on Monday.
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