
8.421 Atomic Physics I Spring, 2012
Prof. Wolfgang Ketterle

Assignment 7

Due: Wednesday, April 18, 2012

This homework assignment discusses various aspects of saturation. It extends the treatment in class with
examples and asks you to do a more rigorous derivation of results obtained in class using the optical Bloch
equations. The problems may look longer, mainly because we give a lot of guidance on how to approach
them.

1. Saturation Intensity

We define the saturation intensity of a laser for an optical transition as the intensity (power/area) at
which a monochromatic beam excites the transition at a rate equal to one half of its natural line width.
In this problem, we compute the saturation intensity for the principal transition in sodium, 590 nm.

a) Express the Einstein A coefficient by the oscillator strength f , the fine structure constant α and the
transition frequency ω. Estimate the lifetime of sodium by assuming an oscillator strength of unity.

b) Find the saturation intensity for the principal transition in sodium. Treat the atom as a two-level
system, neglecting fine and hyperfine structure.

2. Saturation of Atomic Transitions

In class we discussed excitation of atoms via weak radiation. In this limit the atom scatters incident
radiation at a rate proportional to the light intensity, corresponding to a fixed cross-section.

We also discussed the excitation of atoms via strong radiation and showed that in this limit the atom
performs Bloch oscillations between the ground and excited states. Since during these oscillations the
mean excited state population population is at most 1/2 and the excited state decays with rate Γ,
the atom can scatter at most Γ/2 photons per unit time. To obtain a fixed scattering rate, as the
radiation intensity increases, the photon-scattering cross-section decreases, becoming very low at high
light intensities.

This problem will motivate this saturation of atomic transitions by considering broadband excitation.
The obtained results can be exactly extended to narrowband transitions.

a) In the case of broadband excitation, the atom dynamics is correctly described by the Einstein rate
equations. Consider a two-state atom with Rge = Reg the stimulated absorption/emission rate and
A = Γ the spontaneous emission rate. Define the saturation parameter s as s = 2Rge/Γ. Show that in
equilibrium the ratio of the excited state to the ground state populations is Nb/Na = s/ (s+ 2).

b) Express the equilibrium spontaneous emission rate per atom ANb in terms of Γ and s. Show that the
cross-section for photon absorption bleaches out as σ (s) = σ (s = 0) / (1 + s).

c) Find the energy density 〈w〉SAT per unit frequency corresponding to s = 1. Explain why 〈w〉 is
independent of the atomic dipole matrix element 〈g| er |e〉.
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d) Use the relationship between Einstein’s A and B coefficients to obtain an expression for 〈w〉SAT inde-
pendent of the atomic dipole. For s = 1, what is the mean occupation number n per photon mode?

e) Suppose that the light is provided by a laser beam of intensity I0 and Lorentzian lineshape centered
at the atomic transition frequency ω0 and of FWHM Γ′ � Γ. What is the energy density of this beam
per frequency interval at ω0? What beam intensity Is corresponds to s = 1?

f) Let ωR be the Rabi frequency corresponding to a monochromatic beam with the same intensity I0 as the
broadband beam. Show that the stimulated broadband absorption rate can be written as R = ω2

R/Γ
′.

What is ω2
R corresponding to s = 1?

g) If you set Γ′ = Γ, you get exactly the saturation intensity of a monochromatic laser beam and the Rabi
frequency at saturation. Argue why.

3. Optical Bloch Equations with Spontaneous Emission

Consider a two level system driven with Rabi frequency ωR with damping rate Γ. We denote the ground
state and the excited state of the atom as |a〉 and |b〉. In this problem, we compute the population
fraction in the excited state |b〉 at the limit t→∞.

a) Let us begin by guessing the population in the excited state |b〉 in the limit t→∞ at the large detuning
|δ| � Γ, ωR. We estimate ρbb(t→∞) by two different approaches.

i. For Γ = 0 (without spontaneous emission), what is the excited state fraction, ρbb(t), given by the
solution for undamped Rabi oscillations? What do you expect will happen if a weak damping
term is added to account for spontaneous emission? Guess the result for ρbb in the limit t → ∞
by assuming that the oscillatory term will damp out to the average value.

ii. Compare your guess with the result obtained for ρbb in the lowest order perturbation theory, that
is exactly how we obtained the AC Stark shift. Is it the same or not?

For this, assume√ ~ ~that the two states, |a, 1photons〉 and |b, 0photons〉, are coupled by Hint = −d ·E
~with E = i 2π~ω

V ε̂(a− a†). Identify the Rabi frequency as ~ωR = 2
√

2π~ω
V ε̂ · ~dab

√
n.

b) In order to consider the effect of spontaneous emission properly, we need to consider the time-evolution
ρ ρ

of the density matrix for the system: ρ =

(
aa ab

ρba ρbb

)
.

The density matrix ρ consists of two parts: the population fractions (ρaa and ρbb) and the coherence
of the system (ρab and ρba). Here, let us denote the damping rate for the population fraction (ρaa
and ρbb) as Γ1 and the damping rate for the coherence (ρab and ρba) as Γ2. Then, the evolution of
the system, including spontaneous emission, can be completely determined by the following equation
of motion for the density matrix:

1
ρ̇ =

i~
[H, ρ] +

(
Γ1ρbb −Γ2ρab
−Γ2ρba −Γ1ρbb

)
.

where H = ~
(

−ω0 ωRe
iωt

iωt

)
and ρ =

(
ρaa ρab

)
with ρab = ρ∗ba and normalization condi-2 ωRe

− ω0 ρba ρbb
tion ρaa + ρbb = 1.

The above equations of motion for the density matrix are called the optical Bloch equations whose
solutions and physical properties will be discussed in depth in 8.422 (the second half of the atom physics
course). In this problem, we only obtain the steady state solution without solving the optical Bloch
equations directly.

i. By making the the substitutions ρ̂ab = ρabe
−iωt and ρ̂ba = ρbae

iωt, obtain the following equations
of motion for each element in the density matrix:

2



ρ̇aa = iωR (ρ̂ab2 − ρ̂ba) + Γ1ρbb
ρ̇bb = −iωR

2 (ρ̂ab − ρ̂ba)− Γ1ρbb
˙̂ρab = (−iδ − Γ2)ρ̂ab + iωR

2 (ρaa − ρbb)
˙̂ρba = (iδ − Γ2)ρ̂ba − iωR (ρaa2 − ρbb)

ii. Show that the steady state solution for arbitrary δ, Γ1, Γ2, and ωR is:

ω2

ρbb = R

2

Γ2

Γ1

δ2 + Γ2
2 + Γ2ω2

Γ1 R

c) In part b), we denoted the damping rate for the population fraction as Γ1 and the damping rate for
the coherence as Γ2. Accordingly, the result we obtained depends on both Γ1 and Γ2. Now we need to
represent Γ1 and Γ2 in terms of the spontaneous emission rate Γ.

i. Consider the case where there is no driving force (H = 0). Then the density matrix ρ evolves as
follows:

ρ̇ =

(
Γ1ρbb −Γ2ρab .−Γ2ρba −Γ1ρbb

)
Solve for the density matrix ρ(t) at time t. Use ρaa(0), ρab(0), ρba(0) and ρbb(0) as initial
conditions.

ii. Let us suppose that the atom starts out in a superposition state

|ψ〉 = (αa(0)|a〉+ αb(0)|b〉)⊗ |0〉 (1)

where αa(0)|a〉+ αb(0)|b〉 is the atomic state and |0〉 represents the vacuum. At time t, it will be
in a state

|ψ〉 = αa(t)|a〉 ⊗ |0〉+ αb(t)|b〉 ⊗ |0〉+
∑

ck(t)|a〉 ⊗ |1k
k

〉

where |nk〉 is a n-photon state in mode k.

Represent the density matrix ρ(t) in terms of αa(t), αb(t) and ck(t). By comparing this with the
density matrix ρ(t) obtained in i , show that

1
Γ1 = Γ Γ2 = Γ (2)

2

when there is no driving force. Explain why the off-diagonal element decay at half rate of the
excited population.

d) In fact, the relations Γ1 = Γ and Γ2 = 1Γ we have obtained in c) still hold in the presence of the2
driving force.

i. By using this, rewrite the steady state solution for ρbb. Also, represent your result in terns of
the saturation parameter s = 2ω2

R/Γ
2 which is obtained in Problem 2. (You have now rigorously

derived an important result that was obtained in class from Fermi’s golden rule!)

ii. Finally, obtain the population fraction at the large detuning limit: |δ| � Γ, ωR. Compare your
result with your guess in a).
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