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PROFESSOR: Hey. Let's start. So a few weeks ago we started with writing a partition function for a

statistical field that was going to capture behavior of a variety of systems

undergoing critical phase transitions. And this was obtained by integrating over

configurations of this statistical field a rate that we wrote on the basis of a form of

locality.

And terms that were consistent with that were of the form m squared, m to the

fourth. Let's say m to the sixth. Various types of gradient types of terms. And in

principle, allowing for a symmetry-breaking field that was more in the form of h dot

1. And again, we always emphasized that in writing these statistical fields, we have

to do averaging.

We have to get rid of a lot of short wavelength fluctuations. And essentially, the

future m of x, although I write it as a continuum, has an implicit short scale below

which it does not fluctuate. OK, so we tried to evaluate this by certain point, and we

didn't succeed. So we went phenomenologically and tried to describe things on the

basis of scaling theory. Ultimately, this renormalization group procedure that we

would like to apply to something like this.

Now, there is a part of this that is actually pretty easy to solve. And that's when we

ignore anything that is higher than second order in m. Because once we ignore

them, we have essentially a generalized Gaussian integral. We can do Gaussian

integrals.

So what we are going to do is, in this lecture, focusing on understanding a lot about

the behavior of the Gaussian version of the theory. Which is certainly a diminished

version, because it doesn't have lots of essential things. And then gradually putting
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back all of those things that we have not considered at the Gaussian level. In

particular, we'll try to do with them with a version of a perturbation theory. We'll see

that standard perturbation theory has some limitations that we will eventually

resolve by using this renormalization procedure.

OK. So what happens if I do that? Why do I say that that theory is now solve-able?

And the key to that is, of course, to go into Fourier representation. Which, because

the theory that I wrote down has this inherent translational of symmetry, Fourier

representation decouples the various m's that are currently connected to their

neighborhood by these gradients and high orders.

So let's introduce a m of q, which is the Fourier transform of m of x. Let's see. m of

x. And these are all vectors. And I should really use a different symbol, such as m

[INAUDIBLE], to indicate the Fourier components of this field m of x. But since in the

context of renormalization group we had defined a coarse grained field that was in

tilde, I don't want to do that.

I hope that the argument of the function is sufficient indicator of whether we are in

real space or in momentum space. Initially, I'll try to put a tail on the m to indicate

that I'm doing Fourier space, but I suspect that very soon I'll forget about the tail. So

keep that in mind. So if I-- oops. OK. m of q.

So if I go back and write what this m of x is, it is an integral over 2, 2 pi to the, d to

the minus iq dot x with m of q. Now, I also want to at some stage, since it would be

cleaner to have this rate in terms of a product of q's, remind you that this could have

obtained, if I hadn't gone to the continuum version-- if I had a finite system-- to a

sum over q.

And the sum over q would be basically things that are separated q values by

multiples of 1 over the size of the system. And e to the minus iq dot x. This m with

the cues that are now discretized. But let's remember that the density of state has a

factor of 1 over v. So if I use this definition, I really should put the 1 over v here

when I go to the discrete version.
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And I emphasize this because previously, we had done Fourier decomposition

where I had used the square root of v as a normalization. It really doesn't matter

which normalization you use at the end as long as you are consistent. We'll see the

advantages of this normalization shortly.

AUDIENCE: Is there any particular reason for using the different sign in the exponential?

PROFESSOR: Actually, no. I'm not sure even whether I used iqx here or minus iqx here. It's just a

matter of which one you want to stick with consistently. At the end of the day, the

phase will not be that important. So even if we mistake one form or the other, it

doesn't make any difference.

So if I do that, then again, to sort of be more precise, I have to think about what to

do with gradients. Gradients, I can imagine, are the limit of something like n at x

plus A minus n at x divided by A. If this is a gradient in the x direction. And I have to

take the limit as A goes to 0.

So when I'm thinking about this kind of functional integral, keeping in mind that I

have a shortest landscape, maybe one way to do it is to imagine that I discretize my

system over here into spacing of size A. And then I have a variable on each size,

and then I integrate every place, subject this replacement for the gradient.

Again, what you do precisely does not matter here. If you remember in the first

lecture when we were thinking about the dl lattice system and then using these

kinds of coupling between springs that they're connecting nearest neighbors, what

ended up by using this was that when I Fourier transformed, I had things like

cosine. And then when I expanded the cosine close to q, close to 0, I generated a

series that had q squared, q to the fourth, et cetera.

So essentially, any discretized version corresponds to an expansion like this with

sufficient [INAUDIBLE] powers of q in both. So at the end of the day, when you go

through this process, you find that you can write the partition function after the

change of variables to m of x to m of q to doing a whole bunch of integrals over

different q's.
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So, essentially you would have-- actually, maybe I will explicitly put the product over

q outside to emphasize that essentially, for each q I would have to do independent

integrals. Of course, for each q mode I have, since I've gone to this representation

of a vector that is n-dimensional, I have to do n integrals on n tilde of q. On-- m will

be the tail of q.

And if I had chosen the square root of V type of normalization, the Jacobian of the

transformation from here to here would have been 1. Because it's kind of a

symmetric way of writing things. Because I chose this way of doing things, I will have

a factor of V to the n over 2 in the denominator here. But again, it's just being

pedantic, because at the end of the day, we don't care about these factors.

We are interested in things like this singular part of the partition function as it

depends on these coordinates. This really just gives you an overall constant. Of

course, how many of these constants you have would depend basically how you

have discretized the problem. But it is a constant independent of tnh, not something

that we have to worry about.

Now what happens to these Gaussian factors? Essentially, I have put the product

over q outside. So when I transform this integral over xm squared goes over to an

integral over q, m of q squared, which then I can write as a product over those

contributions. And what you will get is t plus, from here, you will get a Kq squared,

put in Lq to the fourth and all kinds of order terms that I have included.

Multiplying this m component vector m of q squared. Again, reminding you this

means m of q, m of minus q, which is the same thing as m star of q, if you go

through these procedures over here. There is 2. And this factor of the v actually will

come up over here.

So previously, I had used the normalization square root of V, and I didn't have this

factor of 1 over V. Now I have put if there, I will have that factor. Yes?

AUDIENCE: m minus q is star q only if it is the real field, right? If m is real.

PROFESSOR: Yes. And we are dealing with the field m of q of this.
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AUDIENCE: And in the case of superfluidity?

PROFESSOR: In the case of superfluidity? So let's see. So we would have a psi of q integral d dx

into the i q dot x psi of x. If I Fourier transform this, I will get a psi star of q integral

into the x into the minus [INAUDIBLE] x psi star of x. So what you are saying is that

in the case where psi of x is a complex number-- I have psi1 plus ipsi2-- here I

would have psi1 minus ipsi2.

So here I would have to make it a statement that the real part and the imaginary

part come when you Fourier transform with an additional minus. But let's remember

that something like this that we are interested is psi1 squared plus psi2 squared. So

ultimately that minus sign did not make any difference.

But it's good to sort of think of all of these issues. And in particular, we are used to

thinking of Gaussians, where I would have a scalar and then I would have x

squared. When I have this complex number and I have psi of q, psi of minus q, then

I have a real part squared plus an imaginary part squared.

And you have to think about whether or not you have changed the number of

degrees of freedom. If you basically integrate over all q's, you may have problems.

You may have at some point to think about seeing psi of q and psi of minus q star

are the same thing. Maybe you have to integrate over just the positive values.

But then at each q you will have two different variables, which is the real part and

the imaginary part. So you have to think about all of those doublings and halvings

that are involved in this statement. And in the notes, I have the writeup about that

that you go and precisely check where the factors of one half and two go.

But ultimately, it looks as if you're dealing with a simple scalar quantity. So I did not

give you that detail explicitly, but you can go and check it in the important issue. The

other term that we have. One advantage of this normalization is that h multiplies the

integral of m of x, which is clearly this m with a tail for q equals to 0.

So that's [INAUDIBLE] mh dotted by this m [INAUDIBLE]. Yes?
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AUDIENCE: This is assuming a uniform field?

PROFESSOR: Yes, that's right. So we are thinking about the physics problem, but we added the

uniform field. So if you are for some physical reason interested in a position where

you feel you can modify that, then this would be h of q, m of minus q. Actually, one

reason ultimately to choose this normalization is that clearly what appears here is a

sum of q. If I go over to my integral over q, then the factor of 1 over V disappears.

So that's one reason-- since mostly after this, going through the details we'll be

dealing with the continuum version-- I prefer this normalization. And we can now do

the Gaussian integrals. Basically, there's an overall factor of 1 over V to the n over 2

for each q mode. Then each one of these Gaussian integrals will leave me a factor

of root 2 pi times the variant.

So I will get 2 pi. The variance is V divided by t plus k q squared plus lq to the fourth,

and so forth. Square root, but there are n components, so I will get something like

this. And then the term that corresponds to q equals to 0 does not have any of this

part.

So it will give a contribution even for q equals to 0 that is like this. But you have a

term that shifts the center of integration from m equals to 0 because of the

presence of the field. So you will get a term that is exponential of essentially--

completing the square-- will give you V divided by 2t times h squared.

Now, clearly the thing that I'm interested is log of Z as a function of t and h. I'm

interested in t and h dependents. So there is a bunch of things that are constants

that I don't really care. And then there is a, from here, minus 1/2, actually minus n

1/2 sum over q log of t plus k q squared and so forth. And plus here, I have V a

squared over 2t.

So I can define something that's like if the energy from log of Z divided by the

volume. And you can see that once I replace this sum of a q with an integral, I will

get a factor of volume that I can disregard then. So there's some other constant.

And then I have plus n over 2 integral over q divided by q pi to the d log of q plus k q
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squared, and so forth. Minus V k squared divided by 2t.

Now, again, the question is what's the range of q's that I have to integrate, given

that I'm making things that are coarse grained. Now, if I were to really discretize my

system and, say, put it on q and you plot this, then the allowed values of q would

leave on the [INAUDIBLE] zone. [INAUDIBLE] zone, say, in the different directions in

q would be something like the q that would be centered around pi over a. But it

would be centered at 0, but then you would have pi plus pi over a. Yes?

AUDIENCE: The d would disappear, right?

PROFESSOR: The d would disappear because I divided by it. So in principle, if I had done the

discretization to a cube and plot this, I would have been integrating over q that this

would find to a cube like this. But maybe I chose some other lattice like a diamond

lattice, et cetera. Then the shape of this thing would change.

But what's the meaning of doing the whole thing on a lattice anyway? The thing that

I want to do is to make sure that I have done some averaging in order to remove

short wavelength fluctuations. So a much more natural way to do that averaging

and removing short wavelength operations is to say that my field has only Fourier

components that are from 0 to some maximum value of lambda, which is the

inverse of some radiant.

And if you are worried about the difference in integration between doing things on

this nice mirror that has nice symmetry and maybe doing it on a cube, then the

difference is essentially the bit of integration that you would have to do over here.

But the function that you are integrating his no singularities for large values of q.

You are interested in the singularities of the function when t goes to 0.

And then the log has singularities when its argument goes to 0. So I should be

interested, as far as singularities are concerned, only in the vicinity of this point

anyway. What I do out there, whether I replace the sphere with the cube or et

cetera, will add some other non-singular term over here, which I don't really care.
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Actually, if I do that, this non-singular term here could be actually functions of t. But

they would be very perfect and regular functions of t. Like constant plus alpha t, plus

pheta q squared, et cetera, that have no singularities. So if I'm interested in

singularities, I am going to be focused on that.

Now actually, we encountered this integral before when we were looking at

corrections to the saddle-point approximation. And if you remember what we did

then was to take, let's say, C of d of h across 0 while taking two derivatives of this

free energy with respect to t. And then we ended up with an integral. There's a

minus sign here over d. n over 2 integral dt 2 pi squared. 2 pi to the d.

Taking two derivatives of the log. The first derivative will give me 1 over the

argument. The second derivative will give me 1 over the argument squared. One

side take care of the minus sign. Now, I think this is a kind of integral, after I have

focused on the singular part, that I can replace when integrating over a sphere.

Now, when I integrate over a sphere, I may be concerned about what's going on at

small values. At q, at small values of q, as long as t is around, I have no problem.

When t goes to 0, I will have to worry about the singularity that comes from 1 over k,

2 squared, et cetera.

So that's really the singularity that I'm interested in. Exactly what happens at large q,

I'm not really all that interested in. And in particular, what I can do is I can rescale

things. I can call q squared over t to the x squared. So I can essentially make that

change over there. So that whenever I see a factor of q, I replace it with t over k to

the 1/2 x.

What happens here? I have, first of all, n over 2. I have 1 over 2 pi to the d. Writing

this in terms of spherical symmetry, I will have the solid angle d dimensions. And

then I would have q to d minus 1 q. Every time I put a factor of q, I can replace it

with this. So I would have a t over k with a power of q/2. And then I have my integral

that becomes the x, x to the d minus 1, 1 plus x squared plus potentially higher

order things like this.
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Now, the upper cut-off for x is in fact square root k over t times lambda. And we are

interested in the limit of when t goes to 0. So that upper limit is essentially going to

infinity. Now, whether or not this integral, if I learn to ignore higher order terms and

focus on the first term, exists really depends on whether d is larger, d minus 1 plus

1 d minus 4 is positive or negative.

And in particular, if I learn to get rid of all those higher order terms. And basically,

the argument for that is the things that would go with x to the fourth, et cetera, if we

carry additional factors of t-- and hopefully getting rid of them as to go to 0-- will give

me an integral like this. This will exist only if I am in dimensions d that is less than 4.

Yes?

AUDIENCE: Are you missing the factors of t over t that comes with the denominator?

PROFESSOR: Yes. There is a factor of 1 over t here. So I have to put out the factor of t. Write this

as 1 plus k over t plus the element of t, et cetera. So there is a factor of 1 over t.

AUDIENCE: t squared.

PROFESSOR: And that's a factor of t squared, because that's two powers. So if I'm in dimensions

d less than 4, what I can write is that this c singular, this as t goes to 0. The leading

behavior, this goes to the constant. So as we discussed, after all of the mistakes

that I made, there will be some overall coefficient A. The power of t will be d over 2

minus 2.

d over 2 came from the integrations. 1 over t squared came from the denominator.

And then if I were to expand all of these other terms that we've ignored, higher

powers of-- here I will get various series that will correct this. But the leading key

dependents in dimensions less than 4 is this thing that we had seen previously. Now

I can take this, and you see that in dimensions d less than 4, this is a singular term

that is diversion.

If I were to say what kind of thing was of the energy that gave result to this? Then it

would say that if the energy must have had some other constant that was

proportionate of the t to the d over 2, that when I put two derivatives, I got

9



something like this. Of course, if the energy could also have had a term that was

linear in t, I wouldn't have seen it. So there is a singular part.

Essentially, if I were to do that integral in dimensions less than fourth, I will get a

leading singularity that is applied. I will get a singularity that is like this. I will get

additional terms per constant-- t, t squared, et cetera-- and singular terms that are

subbing in to this one. And then, of course, I have a term that is minus h squared

over t if I were to include this here.

So why don't I write the answer as B minus h divided by t to the 1/2 plus d/4, the

whole thing squared. So what I did was essentially I divided and multiplied by

inputting d and put the whole thing in the form of h divided by t to something

squared? Why did I do that? It's because we had first related a singular form for the

energies in the scaling picture that had the E to the 2 minus alpha in front of them

and the function of h t to the delta.

And all I wanted to emphasize is that this picture, 2 minus alpha is d over 2. And the

thing that we call the gap exponent is 1/2 plus d over 4. Of course, I can't use this

theory as a description of the case. And the reason for that is that the Gaussian

theory exists and is well-defined only as long as t is positive.

Because once t becomes negative, then the rate essentially becomes ill-defined.

Because if I look at the various rates that I have here, we certainly-- the rate for q

equals to 0. It is proportional to minus t over 2v. If the t changes sign, rather than

having a Gaussian, I have essentially a rate that is maximized as [INAUDIBLE].

So clearly, again, by issue of stability, the theory for t negative does not describe a

stable theory. And that's why n to the fourth and all of those terms will be necessary

to describe that side of the phase transition. So if you like, this is a kind of a

description of a singularity that exists only in this half of the space. Kind of

reminiscent of coming from the disordered side, but I don't want to give it more

reality than that.

It's a mathematical construct. If we want to venture to make the connection to the

10



actual phase transition, we have to prove the n to the fourth. Now, the only reason

to go and recap this Gaussian theory is because since it is solve-able, we can try to

use it as a toy model to apply the various steps of renormalization group that we

had outlined last lecture. And once we understand the steps of renormalization

group for this theory, then it gives us an anchoring point when we describe the full

theory that has n to the fourth, et cetera-- how to sort of start with the

renormalization approach to the theory as we understand and do the more

complicated.

So essentially, as I said, it's not really a phase transition that can be described by

this theory. It's a singularity. But its value is that it is this fully-modelled anchoring

point for the full theory that we are describing. So what we want to do is to do an RG

for the Gaussian model.

So what is the procedure. We have a theory best described in the space of

variables q, the Fourier variables. Where I have modes that exist between 0-- very

long wavelength-- to lambda, which is the inverse of some shortest wavelength that

I'm allowing. And so basically, I have a bunch of modes m of q that are defined in

this range of qx.

The first step of RG was to coarse grain. The idea of coarse graining was to change

the scale over which you were doing the averaging from some a to ba. So average

from a to ba of fluctuations. So once I do that, at the end of the day I have

fluctuations whose minimum wavelength has gone from a to ba.

So that means that q max, after I go and do this procedure, is the previous q max

that I had divided by a factor of b. So basically, at the end of the day I want to have,

after coarse graining, variables that only exist up to lambda over b. Whereas

previously, they existed after that.

So this is very easy at this level. All I can do is to replace this m tilde of q in terms of

two sets. I will call it to be sigma if q is greater than this lambda over b. That is,

everybody that is out here, their q-- I will call it q larger. Everybody that is here, their

q I will call q lesser.
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And all the modes that were here, I will give them a different name. The ones here I

will call sigma. The ones here, if q less than lambda over b, will get called m tilde.

So I just renamed my variables. So essentially, right here I had integration over all

of the modes. I just renamed some of the modes that were inside q lesser and

sigma-- and tilde, the ones that are outside q greater.

So what I have to do for my Gaussian theory. Let's write it rather than in this form

that was discrete in terms of the continuum. I have to iterate over all configurations

of these Fourier modes. So I have these m tilde of q's. And the wave that I have to

assign to them when I look at the continuum is exponential, integral in dq q to pi to

the d. T plus kq squared, and so forth. And tilde of q squared.

And then I had the one term that was hm of 0. What I have done is to simply rewrite

this as two sets of integrations over the-- whoops. This was m. m, let's call is sigma

first-- sigma of q larger integrate over m tilde of q lesser. And actually, you can see

that the modes here and the modes here don't talk to each other.

And that's really the advantage of doing the Gaussian theory. And the thing that

allowed me to solve the problem here and also to do the coarse graining there.

Once we do things like n to the fourth, then I will have couplings between modes

that go across between the three sets. And then the problem becomes difficult.

But now that I don't have that, I can actually separately write the integral as two

parts. And this is for q lesser. And for each one of them, I essentially have the same

rate. The integral over q greater goes between lambda over d and lambda. The

integral over m tilde of q lesser is essentially the same thing.

Exponential minus integral 0 to lambda over d. dv q lesser to five to the d, t plus kq

lesser squared, and so forth. And q lesser squared. And then I have the additional

term which sits at 0. It is part of the modes that are assigned with q lesser.

OK? Fine. Nothing particularly profound here. In fact, it's very simple. It's just

renaming two sets of modes. And the averaging that I have to do, and getting rid of

the fluctuations at short wavelength, here is very trickier. Because this is just a
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bunch of integrations that I had to do over here, but it is only over things that are

sitting close to the edge of this [INAUDIBLE].

So essentially, the integrations over these modes is doing this integral over here,

from lambda over d to lambda, and none of the singularities has anything to do with

the range of integration from lambda over d to lambda. So the result of doing all of

that is simply just a constant-- but not a constant.

It's a function of t that is completely non-singular and have a nice state of expansion

powers of t. A kind of [INAUDIBLE] I call non-singular functions sometimes.

Constant thing is that eventually if you take sufficiently high derivatives, I guess, of

this value, the t dependents [INAUDIBLE]. So all of the interesting thing is really in

this m tilde of k lesser.

And really, the eventual process of renormalization in this picture is something like

this. That all of the singularities are sitting at the center of this kind of orange-

shaped entity. And rather than biting the whole thing, you kind of cut it slowly and

slowly from the edge, approaching to where all of the exciting things are at the

center.

For this problem of the Gaussian, it turns out to be trivial to do so. But for the more

general problem, it can be interesting because procedure is the same. We are

interested in what's happening here, but we gradually peel of things that we know

don't cause anything difficult for the problems. So then I have to multiply with this,

and I have found in some sense a probability for configurations of the coarse grain

system, which is simply given by this.

But then renormalization group has two other steps. The second step was to say,

well, in real space, as we said, the picture that is represented by these coarse grain

variables is grainy. If my pixels were previously one by one by one, now my pixels

are d by d by d. So I can make my picture look to have the same resolution as my

initial picture if I rescale all of the events for a factor of t.

In momentum representation, or intuitive presentation, it corresponds to rescaling
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all of the q's by a factor of B. And clearly, what that serves to achieve is that if I

replace q lesser with B times q prime, then the maximum value will go back to 0 to

lambda. So by doing this one in formation, I can ensure that the upper cut-off is, in

fact, lambda again.

Now, there was another thing, which in real space we said that we defined m prime

to be m tilde rescaled by some factor zeta. I had to do a change of the contrast. I

did have to do the same change of contrast here, except that the variables that I am

dealing with here, it was in x coordinates. What I want to do it is in the q coordinate.

So I will call m with a tail prime of q prime to be m tilde of q prime by a factor of z.

The difference between the z and the zeta, which is real space and Fourier space is

just the fact that in going from one to the other, you have to do integrations over

space. So dimensionally, there is a factor of b to the d difference between the

rescaling of this quantity and that quantity, and if you want to use or the other zeta

against b to the minus d and z.

But since we would be doing everything in Fourier space, we would just use this

factor traditionally. So if I do that, what do I find? I find that Z of t of h is exponential

of some singular, non-singular dependents. And then I have to integrate over these

new variables, m prime of q prime. Yes?

AUDIENCE: In your real space renormalization your m tilde is a function of an x. But in your

Fourier space representation your m tilde is a function of q prime?

PROFESSOR: I guess I could have written here x prime, also. It doesn't really matter. So do you

have here? You have exponential minus the integral. The integration for q prime

now is going back to 0 to lambda. I have db of q prime divided by 2 pi to the d. Now,

you see that every time I have a q-- V or q, q lesser, in fact-- I have to go to q prime

by introducing a factor of the inverse.

So there will be a total factor of V to the minus V that comes from this integration.

And that will multiply t. That will multiply kb to the minus d. But then here I have to

q's because of the q squared there. Again, doing the same thing, I will get V to the d

minus two. I had q plus 2, if you like.

14



And then the next l would be lb to the d minus 4. And you can see that as I have

higher and higher derivatives of q, I get higher and higher powers with negative

[INAUDIBLE]. But then I have m tilde that I want to replace with m prime. And that

process will give me a factor of z squared. And then I have m prime of q prime

squared.

There is no integration for this terms. It's just one mode. But each mode I have

rescaled by a factor of z. So I will have a term that is z h dot m prime of 0. So what

we see is that what we have managed to do is to make the Gaussian integration

over here precisely the same thing as the Gaussian integration that I started with.

So I can conclude that this function tnh that I am interested in has a path that is

non-singular. But its singular part is the same as the same z calculated for a bunch

of new parameters. And in particular, the new t is v to the minus d z squared the old

t. The new k is b to the minus d minus 2 z squared q.

The new L would be to the minus d minus 4 z squared L, and so forth. And the new

h is zh. Yes?

AUDIENCE: There should be q prime squared and q prime 4?

PROFESSOR: Yes. Yes. This is my day to do a lot of algebraic errors. OK. So what is the change

in parameters? So I wrote it over there. So this kind of captures the very simplest

type of renormalization.

Actually, all I did was a scaling analysis. If I were to change positions by a factor of b

and change the magnitude of my field m by a factor z or zeta, this is the kind of

results that I will get. Now, how can we make this capture the kind of picture that we

have over here in the language of renormalization? Want to be able to change two

parameters and reach a fixed point.

So we know that kind of [INAUDIBLE] that t and h have to go to 0. They are the

variables that determine essentially whether you are at this said similar point. So if t

and h I forget, the next most important term that comes into play is k prime, which is
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some function of k. And if I want to be at the fixed point, I may want to choose the

factor z such that k prime is the same as k.

So choose z such that k prime is k. And that tells me immediately that z would be b

to the power of 1 plus d over 2. If I choose that particular form of z, then what do I

get? I get t prime is z squared b to the minus b. So when I do that, I will get b

squared t. I get that h prime is just z times h. So it is b to the 1 plus b over 2 times h.

These are both directions that as b becomes larger than 1, b prime becomes larger

than th prime, becomes larger than h. These are relevant directions. I would

associate with them eigenvalues y dt minus 2. Divide h. That is 1 plus d over 2.

So if I go according to the scaling construction that we had before, f singular of tnh

is t to the power d over y dt, some scaling function of h, g to the power of divide h

over y dt. This is what we have established before. With these values I will get t to

the d over 2, some scaling function of h, t to the power of 1/2 plus d over 4.

We can immediately compare this expression and this expression that we have over

here. Yes?

AUDIENCE: Wait. What's the reason to choose scale as the parameter that maps onto itself and

not L?

PROFESSOR: OK. I'll come to that. So having gone this far, let's see what l is doing. So if I put

here-- you can see that clearly L has v to the minus 2 compared to k. So currently,

the way that we established, L prime is b to the minus 2m. If I had a higher

derivative, it would be b to a minus larger number, et cetera.

So L, out of these other things, are irrelevant variables. So they are essentially

under rescaling, under looking at the system in larger and larger scale, they will go

to 0. And I did get a system that has the same topological structure as what I had

established here. Because I have to tune two parameters in order to reach the

critical point.

Let's say I had chosen something else. If I had chosen z such that L prime equals to
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L. I could do that. Then all of the derivatives that are higher factors of q in this

[INAUDIBLE], they would be all irrelevant. But then I would have k, t, and h all with

irrelevant variables.

So yeah, it could be that there is some physics. I mean, certainly mathematically I

can ask the system what happens if k goes to 0. I kind of ignore the k dependencies

that I have in all of these expressions, but there are going to be singular

dependencies on k.

So if there is indeed some experimental system in which you have to tune, in

addition temperature, something that has to do with the way that the spins or

degrees of freedom are coupled to each other, and that coupling changes sign from

being positive to being negative, you go from one type of behavior to another type

of behavior, maybe this would be a good thing for it. But you can see the kind of

structure you would get if k has to go to 0, you go from a structure where things

want to be in the same direction to things that want to be anti-parallel.

And then clearly you need higher order terms to stabilize things so that your

singularity does not go all the way to 0 wavelength, et cetera. So one can actually

come up with physical systems that kind of resemble that, were there is some

landscape that is also chosen. But for this very simplest thing that we are doing, this

is what is going on.

But you could have also asked the other question. So clearly we understand what

happens if you choose z so that some term is fixed and everything above it is

relevant, everything below it is irrelevant. But why not choose z such that t is fixed?

So that's going to be b to the d over 2, then t prime equals to t.

If I choose that, then clearly the coupling k will already be irrelevant. So this is

actually a reasonable fixed point. It's a fixed one that corresponds to a system

where k has gone to 0, which means that the different points don't talk to each

other. Remember, when we were discussing the behavior of correlation lens at fixed

points, there was two possibilities-- either the correlation lens was infinite or it was 0.
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So if I choose this, then k prime will go eventually to 0. I go towards a system in

which the degrees of freedom are completely decoupled from each other. Perfectly

well-behaved. Fixed behavior that corresponds to 0 correlation lens. And you can

see that if I go through this formula that I told you over here, zeta in real space

would be b to the minus d over 2.

And what that means is that if you average independent variables over a size b, the

scale of fluctuation is because of the central limit theeorem is the square root of the

volume. So that's how it scales. So essentially, what's at the end of the story? That's

a behavior in which there is only one coefficient event-- forget about h. The eventual

rate is just t over 2m squared at different points.

That's the central limit here. So through a different route, we have rediscovered, if

you like, the central limit theorem. Because if you average lots of uncorrelated

variables, you will generate Gaussian rates. So what we are really after in this

language is how to generalize the central limit theorem, how to-- as we find the

analog of a Gaussian, the degrees of freedom that are not correlated but talk to

their neighborhood.

So the kind of field theory that we are after are these generalizations of central limit

theorem to the types of field theories that have some locality enablement.

AUDIENCE: Question.

PROFESSOR: Yes.

AUDIENCE: So wherever you can define the renormalization you're finding different z's?

PROFESSOR: Yes.

AUDIENCE: We can tune how many parameters we want to be able to--

PROFESSOR: Exactly. Yes. And that's where the physics comes into play. Mathematically, there's

a whole set of different fixed points that you can construct for choosing different z's.

You have to decide which one of them corresponds to the physical problem that you

are working on.
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AUDIENCE: Yes. So if the fixed point stops being just defined by the nature of the system, but

it's also depends on how we define renormalization? On mathematical descriptions

and--

PROFESSOR: If by how we define renormalization looking to choose z, yes, I agree with you. Yes.

But again, you have this possibility of looking at the system at different scales. But

we have been very agnostic about what that system is. And so you how many ways

of doing things. Ultimately, you need some reality to come and choose among these

different ways. Yes?

AUDIENCE: So you do want to keep k a relevant variable in group problems, right?

PROFESSOR: No. I make k to be a fixed variable.

AUDIENCE: Oh, exactly. Why don't you add a small amount, like an absolute to the power of bf

and [INAUDIBLE] point z. Plus or minus, doesn't matter. Why the equality

assumption exactly? And the smaller one doesn't change anything? All the other

variables like L become irrelevant?

PROFESSOR: OK. So the point is that it is b raised to some power. So here I had, I don't know,

Katie k prime was k. And you say, why not kb to the absolute?

AUDIENCE: Yeah, exactly.

PROFESSOR: Now, the thing that I'm interested in what happens at larger and larger scale. So in

principle, I should be able to make v as large as I want. So I don't have the freedom

that you mentioned. And you are right in the sense that, OK, what does it mean

whether this ratio is larger than or smaller than what?

But the point is that once you have selected some parameter in your system-- L or

whatever you have, some value-- you can, by playing around with this, choose a

value of V for any epsilon such that you reach that limit. So by doing this, you in a

sense have defined a lens scale. The lens scale would depend on epsilon, and you

would have different behaviors, whether you have shorter than that lens scale or
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larger than that lens scale.

So this has to be done precisely because of this freedom of making b larger, and so

on. Now, if you are dealing with a finite system and you can't make your b much

larger than something or whatever, then you're perfectly right. Yes?

AUDIENCE: Physically, z or zeta should be whatever type quantity is needed to actually make it

look exactly the same-- where it keeps coming out.

PROFESSOR: Exactly, yes. That's right.

AUDIENCE: And then we know, because we already know that we have two relevant variables,

that z has to look this way for a system that has two relevant variables.

PROFESSOR: For the Gaussian one, right.

AUDIENCE: Yeah. But then if we had a different kind of system, then actually, just going from the

physical perspective, we would need a different z to make things look the same.

And that would give us a different number of variables here.

PROFESSOR: Yes. That's right. Now, in terms of that practically in all cases we either are dealing

with a phase that has 0 correlation on that, and then this Gaussian behavior and

central limit theorem is what we are dealing-- and the averaging is by 1 over

volume. Or we have something that is very pretty close to this big [INAUDIBLE] that

we have now discovered, which is just the gradient squared.

And that has its own scaling according to these powers that I have found here, and I

will explain that more deeply. It turns out that at the end of the day, that when we

look at real phase transitions, all of these exponents will change, but not too much.

So this Gaussian fixed point is actually in some sense rather close to where we want

to end up. So that's why it's also an important anchoring point, as I just mentioned.

Again, I said that essentially what we did was take the rate that we had originally,

and we did a rescaling. So basically, we replace x by-- let me get the directions

there. So we replace x by bx prime. If I had started being in real space, I would have

replaced m with zeta m prime. m after getting rid of some degrees of freedom.
20



Again, zeta m prime.

Before I just do that to the rate that I had written before, there was a beta h. Which

was we could derive d d x t over 2m squared, um to the fourth and higher order

terms, k over 2 gradient m squared, L over 2 Laplacian of m squared and so forth.

Just do this replacement of things. What do I get?

I get that t prime is b to the d. Whenever I see x, I replace it with dx prime.

Whenever I see m, I replace it with zeta m prime. So I get here the zeta squared. u

prime would be b to the d zeta to the fourth. k prime would be b to the b minus 2

zeta squared. L prime would be b to the d minus 4 zeta squared, and so forth.

Essentially. All I did was replace x with b times x prime and m with zeta m prime. If I

do that throughout, you can see how the various factors will change. So I didn't do

all of these integrations, et cetera that I did over here. I just did the dimensional

analysis, if you like. And within that dimensional analysis now in real space, if I set k

prime to be k, you can see that zeta is d to the 2 minus d over 2.

And again, you can see that once I have fixed k, all of the things that have the same

power of m but two higher derivatives would get a factor of b to the minus 2, just as

we had over here. Again, with this choice, you can check that if I put it back here, I

would get b squared. But let's imagine that I have a generalization of m to the n.

If I have a term that multiplies m to some power p-- with the coefficient up-- then

under this kind of rescaling I will get up prime is b to the d zeta to the power of p,

up. And with this choice of zeta, what do I get? I will get b to the d. And then I will

get plus p 1 minus d over 2 times up. Which I can define to be b to some power yp

times up. Look here to make sure.

So my yp, the dimension of something that multiplies m to some power p is simply p

plus d 1 minus p or 2. And let's check some things. I have y1. y1 would correspond

to a magnetic field, something that is proportional to the m itself. And if I push p

close to 1, I will get 1 plus d over 2. And that is, indeed, the yh that we had over

here.
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1 plus d over 2. So this is yh. If I ask what is multiplying m squared, I put p equals to

2 here. I will get 2, and then here I would get 1 minus 2 over 2. So that's the same

thing. This is the thing that we were calling before yt. We didn't include any nq term

in the theory, didn't make sense to us.

But we certainly included the u that was multiplied in m to the fourth.

AUDIENCE: So is the p [INAUDIBLE] in the yp?

PROFESSOR: There is p times 1 plus d 1 minus p over 2. p over 2. Just rewrote it. If I look at 4,

here would be 4. And then I would put 1 minus 4 over 2, which is 1 minus 2, which is

minus 1. So I would get 4 minus z. If I look at y6, I would get 6 minus 2d. And so

forth.

So if I just do dimensional analysis and I say that I start with a fixed point that

corresponds to gradient of m squared, and everybody else 0, and I ask, if in the

vicinity of the fixed point where k is fixed and everybody else is 0 I put on a little bit

up any of these other terms, what happens? And I find that what happens is that

certainly the h term, the term that is linear, will be relevant. The term that is m

squared is relevant.

Whether or not all the other terms in the series-- like m to the fourth, m to the sixth,

et cetera-- will be relevant depends on dimension. So once more we've hit this

dimensional fork. So the term m to the fourth that we said is crucial to getting this

theory to have some meaning-- and there's no reason for it to be absent-- is, in fact,

relevant. In fact, close to three dimensions you would say that that's really the only

other term that is relevant.

And you'd say, well, it's almost good enough. But almost good enough is not

sufficient. If we want to describe a physical theory that has only two relevant

directions, we cannot use this fixed point, because this fixed point has three relevant

directions in three dimensions. We have to deal with this somehow. So what will we

do?
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Next is to explicitly include this m to the fourth. In fact, we will include all the other

terms, also. But we will see that all the other terms, all the higher powers, are

irrelevant in the same sense that all of these higher derivative terms are irrelevant.

But that m to the fourth term is something that we really have to take care of. And

we will do that.
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