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PROFESSOR: OK, let's start. So it's good to remind ourselves why we are doing what we are doing

today. So we've seen that in a number of cases, we look at something like the

coexistence line of gas and liquid that terminates at the critical point. And that in the

vicinity of this critical point, we see various thermodynamic quantities and correlation

functions that have properties that are independent of the materials that are

considered.

So this led to this concept of universality, and we were able to justify that by looking

at properties of this statistical field. And we ended up with [INAUDIBLE]

normalization group procedure, which classified the different universality classes

according to the number of components of the order parameter, the thing that

categorizes the coexisting phases, and the dimensionality of space.

And that, in particular something like a liquid-gas system, would correspond to n

equals to 1. Another example that would correspond to that would be, for example,

a mixture of two metals in a binary alloy. You can have the different components

mixed or phase separated from each other.

So the normalization group method gave us the reason for there is this universality,

but we found that calculating the exponent was a hard task coming from four

dimensions. So the question is, given that these models or these numbers, the

singularities here are universal, can we obtain them from a different perspective?

And so let's say we are focused on this kind of liquid-gas system, which belong to

this n equals to 1 universality class. So we can try to imagine the simplest model

that we can try to solve that belongs to that universality class. And again, maybe

thinking in terms of a binary alloy, something that has two possible values.
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In the liquid-gas, it could be cells that are either empty or filled with a particle. And

so this binary model is this Ising model, where, at each side of a lattice, we put a

variable that is minus plus 1.

And so the idea is, again, if I take any one of these Ising models and I coarse-grain

them, I will end up with the same statistical field, and it would have the same

universality class. But if I make a sufficiently simple version of these models, maybe

I can do something else and solve them in a manner that these critical behaviors

can come up in an easier fashion.

So let's say we are interested in two dimensions or three dimensions. I can draw

two dimensions better. We draw a square lattice. On each side of it, we put one of

these variables. And in order to capture this tendency that there is a possibility of

coexistence where you have patches that are made of liquid or gas, or made of

copper or zinc in our binary alloy, we need to have a tendency for things that are

close to each other to be in the same state so that we can capture by a Hamiltonian,

which is a sum over nearest neighbors, that gives an enhanced weight if they are

parallel.

And whatever that coupling is, once it is rescaled by kT, this combination, the

energy divided by kT, we can parametrize by a dimensionless number k. And

calculating the behavior of the system as a function of temperature, as the strength

of the coupling in this simplified model, amounts to calculating the partition function

as a function of a parameter k, which is a sum over, if I'm in a system that has n

sites all to the n configurations, of a weight that tries to make variables that are next

to each other to be in the same state.

So clearly, what is captured here is a competition between energy-- energy would

like everybody to be in the same state-- versus entropy. Entropy wants to have

different states at each site. So you'll have a factor of 2 per site as opposed to

everybody being aligned, which is essentially one state. And so that competition

potentially could lead you to a phase transition between something that has

coexistent at low temperature and something that is disordered at high
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temperatures.

So now we have just recast the problem. Rather than having a partition function

which was a functional integral over all configurations of the statistical field, I have to

do this partition function, which is finite number of configurations, but it's still an

interacting theory. I cannot independently move the variable at each site.

So the question is, are there approaches by which I can calculate this? And one set

of approaches is to start with a limit that I can solve and start expanding on that.

And these expansions that are analogous to the perturbation expansions that we

learned in 8.333 about interacting systems, in this case are usually called series

expansions. One would perform them on a lattice.

Now, I kind of hinted at two limits of the problem that we know exactly what is

happening, and those lead to two different series expansions. One of them is the

low-temperature expansions. And here the idea is that I know what the system is

doing at T equals to 0. At T equals to 0, I have to find the configuration that

minimizes the energy.

T equals to 0 is also equivalent to k going to infinity. I have to find a state that

maximizes this weight, and that's obviously the case where all of the spins are either

plus or minus. So all sigma i equals to plus 1 or all sigma i equals to minus 1.

But for the sake of doing one or the other, let's imagine that they are all plus and

that I am solving the problem for the generalization of square cube to d-dimensional

lattice. After all, we were doing d dimensions in general. So in d dimensions, each

spin will have d neighbors.

And so if I ask, what is the weight that I will get at 0 temperature, essentially each

spin would have d factors of k. So the weight that I would get at T equals to 0-- let's

call that Z of T equals to 0-- is simply e to the dNk. There are N sites. Each one of

them has d neighbors in d dimensions. Of course, each one of them has 2d

neighbours, but then I have to count the number of neighbors per site.

So basically, this bond is shared by two neighbors, so half of it contributes to this
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site. And there are two possibilities. So the partition function at T equals to 0 is

simply this. It's just the contribution of the two ground states.

Now, we are interested in the limit where T goes to 0. So at T equals to 0, I know

what is happening. Now, what I will get as I allow temperature to be larger, at some

cost I am able to flip some of these spins from, say, the plus to minus. And I will get,

in this case, islands of negative spin in sea of plus.

And these islands will give a contribution that is going to be exponentially small in k

and something to do with the bonds that I have broken. And by broken, I mean

gone from the high energy, well, highly satisfied plus-plus state to the unsatisfied

plus-minus state, in fact, 2k times number of broken bonds.

So we can very easily write the first few terms in this series. So let's make a list of

the excitation, or island that I can make, how many ways I can make this, which I will

call degeneracy, and the number of broken bonds. So clearly, the simplest thing

that I can do in a sea of pluses is to make one island, which is simply a site that has

been previously plus and now has gone to become a minus.

And this particular excitation can occur any one of N places if I have a lattice of size

N. And I'm going to ignore any corrections that I may have from the edges. If you

want you can do that, and that'd be more precise. But let's focus, essentially, on

things that are proportional to N.

Then how many bonds have I broken? You can see that in two dimensions, I have

broken four bonds. In three dimensions, it would have been six. So essentially, it is

twice the number of dimensions that is taking place. And so the contribution to

energy is going to be e to the minus 2d. And I went from plus k to minus k, so in

fact, I would have to multiply by 2k.

Now, the next thing that I can do, the lowest energy excitation is to put two minuses

that are next to each other in this sea of pluses. OK? Now, you can see that in two

dimension, I can orient this pair along the x-direction or along the y-direction. And in

general, there would be d directions, so I would have dN.
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Roughly, you would say that the number of bonds that you have broken is twice

what you had before if the two were separate. But there is this thing in between that

is now actually a satisfied bond. So you can convince yourself that, actually, if the

two of them were separate, these two minus excitations, I would have 4d. But

because I joined them, essentially I have 2d minus 1 from each one of them, and

there's two of those.

And of course, the next lowest excitation would indeed be to have two minuses that

have no site, are totally separate from each other. And the contribution-- the

number of these, well, this is something to count. The first one can any one of N

places.

The next one can be in any one of N minus 2d minus 1 places. It cannot be on the

same one, and it cannot be in any of the 2d neighbors. And I should have double

counting, so there is a factor of 2 here. And the cost of this is simply twice that, so

this is 4d.

So if I want to start writing a partition function expanded beyond what I have at 0

temperature, what I would have would be 2e to the dNk. There's zero temperature

contribution. I would have 1 plus N e to the minus 4dk plus dN e to the minus 4 2d

minus 1 k. And then from the other one that I have written, N N minus 2d minus 1

over 2e to the minus 8dk. And I can keep going and adding higher and higher order

terms of the series. OK?

OK. Once I have the partition function, I can start calculating the energy, which

would be minus d log Z with respect to d beta. What is beta? Well, I said that this

factor is something like 1 over kT, which is beta and J.

So assuming that I have a fixed energy and I'm changing temperature, and the

variations of k are reflecting the inverse temperature beta, then I can certainly

multiply here a J and a J, which is a constant. And all I need to do is to take a J d by

dk of log of the expression that I have above there. OK?

So let's take the log of that expression. I have log of 2 plus dNk from here. And then
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I have log of 1 plus terms in a series that I have calculated perturbity. Now, log of 1

plus a small quantity I can always expand as a small quantity minus x squared over

2. You may worry whether or not, with N ultimately going to infinity, this is a small

quantity.

Neglecting that for the time being, if I look at this as log of 1 plus a small quantity,

from here I would get N e to the minus 4dk plus dN e to the minus 4 2d minus 1 k

plus N N minus 1 minus 2d over 2e to the minus 8dk, and so forth.

But then remember that log of 1 plus x is x minus x squared over 2 plus x cubed

over 3, and so forth. So if x is my small quantity, I will have a correction, which is

minus x squared over 2. Let's just do it for this first term. I will get minus N squared

over 2e to the minus 8dk, and there will be a whole bunch of higher-order terms.

OK?

Now, where am I going with this? Ultimately, I want to calculate various quantities

that are extensive in the sense that they are proportional to N, and when I divide by

N I will get something like energy per site.

So if I do that, I have to divide this whole thing by N, I can see that here I have a

term that is log T divided by N. In the N goes to infinity limit, it's a term that has

order of 1 over N I can neglect. But all of these other terms are proportional to N.

And when I divide by N, I can drop these factors of N.

Well, except that I have a couple of terms that, if I had left by themselves, potentially

could have been order of N squared. I have N squared over 2, but fortunately, you

can see that it cancels out over there.

Now, the reason this happens, and also the reason this series is legitimate, is

because we already did something very similar to that in 8.333 when we were doing

these cumulant expansions. And when we were doing these cumulant expansions,

we obtained the series for, then, the grand partition function, which was a whole

bunch of terms.

But when we took the log, only the connected terms survived. And the connected
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terms were the things that, because they had a center of mass, were giving you a

factor that was proportional to volume. And here you expect that ultimately

everything that I will get here, if I calculate, let's say, log Z properly and then divide

by N, it should be something that is order of 1. It shouldn't be order of N, or N

cubed, or any of these other terms.

So essentially, the purpose of all of these higher-order terms is really to subtract off

things such as this that would arise in the counting when we look at islands and

excitations that are disconnected. So I could have something right here, something

right here.

So this would be, essentially, a product of the contributions of these different

islands. As long as they are disconnected from some term in the series, there would

be a subtraction that would get rid of that and would ensure that these additional

factors of N, because I can move each island over the entire lattice, would

disappear.

So I have this series, and now I can basically take the derivatives. So I have minus

J, and I take d by dk of the various terms that have survived. The first one is d. So

dJ is essentially the energy pair site that I would have at 0 temperature. I have

strength J, deeper site. And then the excitations will start to reduce that and correct

that.

And so from here, I would get minus 4d e to the minus 4dk. From here, I would get

minus 4 2d minus 1 d e to the minus 4 2d minus 1 k. The N-squared terms

disappeared. So I would have 2d plus 1 over 2. But then it gets multiplied by 8d

when I take a derivative. So I will get plus 4d 2d plus 1 e to the minus 8dk, and so

forth in the series. OK?

So these terms that are subtraction, you can see that you can really easily connect

to these primary excitations. If you like, this term corresponds to taking two of these

and colliding them with each other. They cannot be on top of each other. They

cannot be next to each other. And so there is a subtraction because a number of

configurations are not allowed. So this is, in some sense, a kind of expansion in
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these excitations and the interactions among these excitations. OK?

Now presumably, what is happening is that at very low temperature, you are going

to get these individual simple excitations with a little bit of interaction between them.

As you increase the temperature, the size of these islands will get bigger and

bigger.

They start to merge into each other. Configurations that you would see will be big

islands in a sea. And presumably, the size of these islands is some measure of the

correlation length that you have in this low temperature state.

Eventually, this correlation length will hit the size of the system. And then the

starting point, that you had a sea of pluses and you're exciting around it, it is no

longer valid. If you like, that vacuum state has become unstable, and this series, the

way that we are constructing it, ceases to go beyond that point. OK?

So let's take another step. If I've calculated the energy, I could also calculate the

heat capacity, which is d by dT. Actually, I expect the heat capacity to be extensive

also, so I'll divide by N. So I will look at the heat capacity per site. I know that the

natural units of heat capacity are kB, which has dimensions of energy divided by

temperature. So I divide by kB. So here I will have kBT.

But then I notice that kBT, these are related inversely to K, capital K. It is J over K.

So I can write this as J over K, and d by d-- 1 over K will give me a minus K

squared. I will have a factor of 1 over J, and the 1 over J actually cancels this factor

of J here. So all I need to do-- well, actually, let me write it, J d by dK of this E over

N.

So the expression that I have above, I have to take another derivative with respect

to K multiplied by minus K squared over J. The J's cancel out, and so I will have a

series that will be proportional to K squared. Good, I made everything

dimensionless.

And then the first term that will contribute will be 16 d squared e to the minus 4dK,

from here. And from here, I will get 16 2d minus 1 squared d e to the minus 4 2d
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minus 1 K. And from here, I would get minus 32d 2d plus 1 e to the minus 8dK, and

then so forth. OK?

So you can see that this is something that is a kind of mechanical process, that in

the '40s and '50s, without even the need for any computers, people could sit down

and draw excitations, provide these terms, and go to higher and higher order terms

in the series.

Now, the reason that they were going to do this is that the expectation that if I look

at this heat capacity as a function of something like temperature, which is e to the 1

over k, for example, then it starts at 0. And if we get corrections from these higher

and higher order terms in the series-- I calculated the first few-- I don't know what

will happen if I were to include higher and higher order terms.

But my expectation is that, say, at least at some point when this expansion from low

temperature breaks down, I will have a divergence, let's say, of the heat capacity.

Or maybe I calculated susceptibility or some other quantity, and I expect to have

some singularity. And maybe by looking and fitting more terms in the series, one

can guess what the exponent and the location of the singularity is.

So you can see that, actually in this case, the natural variable that I am expanding is

not K, but e to the minus 2dK-- sorry, e to the minus 2K because each excitation will

have a number of broken bonds that I have to calculate. Each one of them makes a

contribution like this. So maybe we can call this our new variable. And we have a

series that has a function of this or some other variable, has a singularity.

Actually, you should be able to, first of all, convince yourself that the nature of the

singularity is not modified by any mapping that is analytical at the point of the

singularity. So if the heat capacity as a function of k has a particular divergence, as

a function of u it will have exactly the same divergence.

In particular, we expect that as u approaches some critical value, the kinds of

functions that we are interested have a behavior, a singular behavior, that is

something like 1 minus u over uC. Let's say for the heat capacity, I would expect
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some kind of a singularity such as this.

If I had a pure function such as this and I constructed an expansion in u, what do I

get? I will get 1 plus alpha u over uC plus alpha alpha plus 1 over 2 uC squared u

squared, and so forth. It's just a binary series expanded. The l term in the series

would be alpha alpha plus 1 alpha plus l minus 1 divided by l factorial-- that's

actually 2 factorial-- uC to the power of l u to the l and so forth. OK?

Now, typically, one of the ways that you look at series and decide whether it's a

singular convergent series or what the behavior is is to look at the ratio of

subsequent terms. So let's say that when I calculated my function C as a function of

u, I constructed a series whose terms had coefficients that I will call al. OK?

So here, if you had exactly this series, you would say that the ratio al divided by al

minus 1 is essentially the ratio of one of these factors compared to the previous

one. And every time you add one of these factors, you add a term that is like this

alpha plus l minus 1, l factorial compared to l minus 1 factorial has a factor of l, and

then you have uC. And I can rewrite this as uC inverse, l divided by l is 1, and then I

have minus 1 minus alpha divided by l. OK?

So a pure divergence of the form that I have over here would predict that the ratio

of subsequent terms would be something like this. And presumably, if you go

sufficiently high in the series, in order to reproduce this divergence you must have

that form.

So what you could do as a test is to plot, for your actual series, what the ratio of

these terms is as a function of 1 over l. So you can start with the ratio of the second

to first term. You would be at 1/2. Then you would go 1/3, then you would go 1/4,

you would have 1/5, and basically you would have a set of points. And you would

plot what the location is for the first term in the series, the next term in the series,

the next term in the series, and so forth.

And if you are lucky, you would be able to then pass a straight line at large

distances in the series. And the intercept of that extrapolated line would be your
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inverse of the singular point. And the slope of this line would give you 1 minus alpha

or minus 1 minus alpha. OK?

So there is really, a priori, not much reason to hope that that will happen because

you can say that if I look at the series that is A 1 minus u over uC to the minus

alpha, plus I add an analytic part, which is sum p equals 1 to, say, 52 of bl u to the l.

For any bl in this function has exactly the same singularity as the original one. And

yet the first 52 terms in the series, because of this additional analytical form, have

nothing to do with the eventual singularity. They're going to be massing that.

So there is no reason for you to expect that this should work. But when people do

this, and they find that, let's say, for d equals to 2 up to some jumping up and down,

they get a reasonable straight line. And the exponent that they get would

correspond very closely to the alpha of 0, which is the logarithmic divergence that

one gets.

So this is, for d equals to 2, and then they repeat it, let's say, for d equals to 3, they

get a different set of points. OK? Maybe not perfectly on a straight line, but you can

still extrapolate and conclude from that that you'll have an alpha which is roughly

0.11 when d equals to 3, which is quite good.

So for some reason or other, these lattice models are kind of sufficiently simple that,

in an appropriate expansion, they don't seem to give you that much of a problem.

And so people have gone and calculated series, let's say, this was in '50s and '60s,

just by drawing things on hand. And maybe some primitive computers, you can go

to order of 20 terms in this series, and then extrapolate exponents for various

quantities. OK?

But it's not as simple as that. And the reason I calculated the first three terms for

you was to show you that what I told you here was clearly a lie. Why is that?

Because of the three terms that I explicitly calculated for you in that series, the third

one is negative. Right? So clearly, if I were to plot that, I will get something over

here. Right?
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So what's going gone there is a different issue. And people have developed kind of

methodologies and ways to look at series and guess what is going on and yet

continue to extract exponents. So one potential origin for alternating signs-- and any

series that has a divergence such as the one that I have indicated for you will have,

eventually, signs that need to be positive-- has to do with the following.

Let's say if I take a series, which is 1 over 1 minus z/2. OK? This is a very nice

series. It's 1 plus 0/2 z squared/4, z cubed/8. You could apply this ratio test to this

series and conclude that you have a linear divergence.

Now, suppose I multiply that by 1 over 1 plus z squared, which is a function that's

perfectly well-behaved as a function of z. Yet if I multiply it here, I will get 1 minus z

squared plus z to the fourth minus z to the sixth. And what it does is it kind of

distorts what is happening over here. Actually, in this series you can see it kind of

becomes ill-defined when z is of order of 1. It changes the signs, et cetera.

But the function itself has a perfectly good singularity that appears at z equals to 2.

And starting from an expansion from 0, there should be no problems along the line

until you hit z of 2. What is the reason for these alternating signs? It is because you

should be looking at the complex z plane. And in the complex z plane, you have

poles at plus and minus i which are located closer to the origin than you have at 2.

So basically, your series will start to have problems by the time you hit here, and

that problem is reflected in the alternating behavior. It's also showing up over there.

Yet it has nothing to do with going along the real axis and encountering the

singularity that you are after. OK?

So one thing that you can do is to say, well, who said I should use z as my variable?

Maybe I can choose some other function v of z. OK? And then when I choose the

appropriate thing, the singularity on the real axis will be pushed to v of 2. But maybe

I chose appropriate function of v of z such that the other singularities are pushed

very far away so that the first singularity that I encounter is over here. OK?

And it turns out that if you take this series over here and rather than working with e
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to the minus k, we recast things in terms of tanh K-- let's call that v-- which is e to

the K plus e to the minus K-- well actually, tanh K I can also write as e to the 2K

minus 1 e to the 2K plus 1. I mean, it's just a transformation. So I can replace e to

the minus 2K with some function v, substitute for u in that series, and I will have a

different function as an expansion in powers of v.

And once people do that, same thing happens as here. You'll find a function that all

of its terms are, in fact, positive, and the things that I mentioned to you over here

were applied. After such transformation, you get very nice behaviors. OK? So there

seems to be some guesswork into finding the appropriate transformation.

There are other methods for dealing with series and extracting singularities called

Pade approximants, et cetera, which I won't go into. But there are kind of, again,

clever mathematical tricks for extracting singularity out of series such as this. OK?

So I'll tell you shortly why this tanh K is really a good expansion factor. It turns out

that for Ising models, it's actually the right expansion factor if we go to the other limit

of high temperatures. OK? So basically, now at T going to infinity, you would say

that sigma i is minus or plus 1 with equal probability.

As T goes to infinity, this factor that encodes the tendency of spins to be next to

each other has been scaled to 0, so I know exactly what is going on at infinite

temperature. Basically, at each site, I have an independent variable that is

decoupled from everything else. So I can start expanding around that for, say, the

partition function.

Let's think of it for a general spin system. So I will write it as a trace over, let's say, if

I have Potts model rather than two values, I would have K values of something like e

to the minus beta H, again, trying to be reasonably general. And the idea is that as

you go to infinite temperature, beta goes to 0, and this function you can expand in a

series 1 minus beta H plus beta squared H squared over 2, and so forth.

Now, the trace of 1 is essentially summing over all possible states. Let's say the two

states that you would have for the Ising model or however many that you have for
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Potts models at each site independently. So that can give me some partition

function that I will call Z0. It is simply 2 to the n for the Ising model.

But once I factor that, you can see that the rest of the terms in the series can be

regarded as expectation values of this Hamiltonian with respect to this weight in

which all of the degrees of freedom are treated as independent, unconstrained

variables.

And of course, the thing that I'm interested is log of the partition function. And so

that will give me log of Z0, and then I have the log of this series. And then you can

see that that series is a generating function for the moments of the Hamiltonian. So

its log will be the generating function for the cumulant, so H to the l 0, the cumulant.

So the variance at the second order and appropriate cumulant at higher orders.

OK?

So let's try to calculate this for the Ising model, where my minus beta H is K sum

over i, j sigma i sigma j. OK? Then at the lowest order, what do I get? The average

of beta H is K sum over i, j average of sigma i sigma j with this zeroed weight.

But as I emphasized, at zeroed weight, every site independently can be plus or

minus. Because of the independence, I can do this. And then since each site has

equal probability to be plus or minus, its average is 0. So basically, this will be 0.

OK?

So the first thing that can happen in that series-- if I go to the next order. So at next

order, beta H squared would involve K squared sum over i, j K, l sigma i sigma j

sigma K sigma l. And I have to take an average of this, which means that I have to

take an average of something like this.

OK. And you would say, well, again, everything is 0. Well, there is one case where it

won't be 0-- if these two pairs are identical. Right? So this is going to give me K

squared sum over pair i, j being the same as K, l. Then I will get, essentially, sigma i

squared sigma j squared. Sigma i squared is 1. Sigma j squared is 1. So basically, I

will get 1. And this is going to give me K squared times the number of bonds. OK?

14



So you can see that I can start thinking of this already graphically. Because what I

did over here, I said that on my lattice this sum says you pick one sigma i sigma j. If

I were to pick the other sigma i sigma j over here, the average would be 0. I am

forced to put two of them on top of each other.

If I go to three, there is no way that I can draw a diagram that involves three pairs in

which every single site occurs twice, which is what I need. Because a single site

appearing by itself or three times will give me sigma i cubed is the same as sigma i.

It will average to 0.

So the next thing that I can do is to go to level four. At the level of four, I can

certainly do something like this. I can put all four of them on top of each other, and

then I get a K to the fourth contribution. Or I could put a pair here, and if they're

here, for log Z that would be unacceptable because that will get subtracted out

when I calculate the variance. It's not a connected piece. It's a disconnected piece.

But I could have something like this, two of them turned like this. So that's four.

But really, the one that is nontrivial and interesting is when I do something like this,

like a square. So I go here sigma 1 sigma 2, sigma 2 sigma 3. That sigma 2 has

been repeated twice and becomes sigma 2 squared and goes away. Sigma 3 sigma

4, sigma 3 repeated twice, sigma 4 repeated twice, sigma 1 repeated twice,

[INAUDIBLE]. OK?

So you can see that this kind of expansion will naturally lead you into an expansion

in terms of loops on a lattice. So the natural form of high temperature expansions

are these closed strings or loops, if you like, that you have to draw on the lattice.

Now, it's also clear that the thing that goes between two sites, that I'm indicating by

K, in all cases is likely to be repeated by putting more and more things on top of

each other without modifying the effect. So I can go here to 4 and things like

actually 3 and things like that. So basically, you can see that I should really do a

summation over the contribution of 2, 4, et cetera all on top of each other, or 1, 3, 5

on top of each other, and call them new variables.
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So when we were doing the cluster expansion for particles interacting, we

encountered this thing that we thought v was a good variable to expand it. But then

because of these repeats, we decided that e to the minus beta v minus 1 was a

good variable to expand it.

So a similar thing happens here. And for the Ising model, it is a very natural thing to

recast this series in a slightly different way. You see that the contribution of each

bond to the partition function, and by a bond I mean a pair of neighboring sites, is a

factor e to the K sigma i sigma j. OK?

Now, since we are dealing with binary variables, this product, sigma i sigma j, can

only take two values. It's either plus K or minus K depending on where things are

aligned or misaligned. So I can indicate the binary nature of this in the following

fashion. I can write this as e to the K plus e to the minus K over 2 plus sigma i sigma

j e to the K minus e to the minus K over 2.

So that when I'm dealing with sigma sigma being plus, I add those two factors. e to

the minus K's disappear. I will get e to the K. When I'm dealing with this thing to the

minus, the e to the K's disappear, and I will get e to the minus K. So it's correct

rewriting of that factor.

The first term you, of course, recognize as the hyperbolic cosine of K, the second

one as the hyperbolic sine of K. And so I can write the whole thing as hyperbolic

cosine 1 plus hyperbolic tanh of K sigma i sigma j. OK?

So this tanh is really same thing as here. It's the high-temperature expansion

variable. As K goes to 0 at high temperature, tanh K also goes to 0. And it turns out

that a much nicer variable to expand is this quantity tanh K. And so that I don't have

to repeat it throughout, I will give it the symbol t. So small t stands not for reduced

temperature anymore, but for hyperbolic tanh of K.

So my partition function now, Z-- maybe I'll go to another page. So my partition

function is a sum over the 2 to the N binary variables e to the K sigma i sigma j sum

over all bonds. I can write that as a product of these exponential factors over
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[INAUDIBLE].

Each of these exponential factors I can write as cosh K 1 plus t sigma i sigma j. All

the factors of cosh K I will take to the outside. So I will get cosh K raised to the

power of the number of bonds that I have in my lattice because each bond will

contribute one of these factors. And then I have this sum over sigma i product over

bonds. So this is the product of 1 plus t factors.

So for each-- maybe I'll do it over here. So for each i, j, I have to pick one of these

factors. I can either pick 1, nothing, or I can pick a factor of t sigma i sigma j. OK?

So the first term in this series-- since it's a series in powers of t, the first term in the

series is to pick 1 everywhere.

The next term is to pick one factor at some point. But then when I pick that factor,

that term in the series, I have to sum over sigma i. And when I sum over sigma i,

since this sigma i can be plus or minus with equal probability, it will give me 0. OK?

So I cannot leave this sigma i by itself. So maybe I will pick another higher-order

term in the series that has a t, a sigma i that would make this into a sigma i squared,

and then I will have a sigma K here. OK?

Now, note it was kind of similar to what I was doing here. But here I could pick as

many bonds as I like on as many factors of K. Now what has happened here is,

effectively, I have only two choices.

One choice is having gone many, many times, so summing all of the terms that had

2, 4, et cetera. That's what gives you the cosh K. Or including something like this,

sum of 1, 3, 5, et cetera. That's what gives you tanh K. But the good thing is that it's

really now a binary choice. You either draw one line, or you don't draw anything.

OK?

So again, your first choice is to somehow complete the series by drawing something

like this. And quite generically-- OK, so after that has happened, then this is sigma i

squared. This is sigma j squared. These are all-- they have gone to 1. And then you

do the sum over sigma i, you will get a factor of 2.
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So the answer is going to be 2 to the number of sites, N, cosh K to the power of the

number of bonds. And then I would have a series, which is the sum over all graphs

with even number of bonds per site like here. So I either have 0 bond going here, or

I can have two bonds. I could very well have something like this, four bonds. That

doesn't violate anything.

So all I need to ensure in order that sigma i does not average to 0 is that I have an

even number per site. And then the contribution of the graph is t to the number of

bonds in the graph. And at this stage when I'm calculating a partition function, there

is no reason why I could not have disconnected graphs. For the partition function,

there is no problem. Presumably, when I take the log, the disconnected pieces will

go away. OK? Yes?

AUDIENCE: Where does the 2 to the N come from again?

PROFESSOR: OK. So at each site, I have to sum over sigma i. So sigma i is either minus 1 or plus

1. What I'm doing is sum over sigma i sigma i to some power. And this is either

going to give me 2 or 0 depending on whether P is even or P is odd. All right? OK?

So you can try to calculate general terms for this series. Let's say we go to

hypercubic lattice, which is what we were doing before. The number of bonds per

site is d. So this, for the hypercubic lattice, the number of bonds will be dN. You

could do this calculation for a triangular lattice. You don't have to stick with FCC

lattice. You don't have to stick with these hypercubic lattices.

The first diagram that you can create is always the square. OK? And in d

dimensions, one leg has a choice of d direction. The next one would be d minus 1.

So this would be d d minus 1 over 2 t to the fourth. But you could start it from any

site on the lattice so you would have something like this.

The next term that you would have in the series is something that involves, let's say,

six bonds. So the next term will be N t to the 6. And I think I sometimes convince

myself that the numerical factor was something like this, but doesn't matter. You

could calculate out of this. Yes?
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AUDIENCE: What if we have diagrams of order of t squared, just [INAUDIBLE] there and back?

PROFESSOR: OK. Where would I get the t squared from here? OK? So from this bond, I have this

factor, 1 plus t sigma i sigma j. There is no t squared. I would have had K squared,

K to the fourth, et cetera. But I re-summed all of them into hyperbolic cosine and the

hyperbolic sine. So this--

AUDIENCE: So [INAUDIBLE] taking this product along all the bonds, you can kind of go along

the same bond.

PROFESSOR: We already summed all of those things together into this factor t.

AUDIENCE: OK.

PROFESSOR: Yeah? OK? Yeah, it's good. And that's why this tanh is such a nice variable. OK? So

there is actually the nicer series to work with in terms of trying to extract exponent is

this high-temperature series in terms of these new diagrams, et cetera. But I'm not

going to be doing diagrammatics.

What I will be using this high-temperature series is the following. One, to show that

in a few minutes we can use it to exactly solve the one-dimensional Ising model and

gain a physical understanding of what's happening, and 2, to re-derive Gaussian

model.

Turns out that there is a close connection between all of these loops that you can

draw on a lattice through some kind of a path integral way of thinking about it with

the Gaussian model. And that we actually will use as a stepping stone towards

where we are really headed, which is the exact solution of the 2D Ising model. OK?

So the 1D Ising model. And actually, the method is sufficiently powerful that we can

compare and contrast two cases, one when you have open chain. So this is a

system that is composed of sites 1, 2, 3, 4, N minus 1, N. On each one of them I

have an Ising variable.

And if I follow my nose, it's a Z is 2 to the number of sites cosh K to the power of the
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number of bonds. Actually, clearly with open systems, the number of bonds is 1 less

than the number of sites. So I can be extremely precise. It is N minus 1. And then I

have to draw all graphs that I can on this lattice that have an even number of bonds

emanating from each site. Find one.

[LAUGHTER]

OK. Since you won't have one, that stands. So you can take the log of that. You

have this free energy, whatever you like. We can't. 1 is essentially not the zeroth

order term in this series. Yes? That was the question. OK. All right?

You can use the same thing, same technology, to calculate spin-spin correlation. So

I pick spins m and n on this chain. Let's say this is spin m here, and somewhere

here I put spin n. And I want to know the average of that quantity. What am I

supposed to do?

I'm supposed to sum over all configurations with the weight sigma i sigma i plus 1

product over all-- well, actually, we can be general with this. Let's call it product over

all bonds, which, in this case, are near neighbors, sigma i sigma j. That weight I

have to multiply by sigma m sigma n. And then I have to divide by the partition

function so that this is appropriately weighted. OK?

So I can do precisely the same decomposition over here. So I will have 2 to the N

cosh K to the number of bonds. In fact, this I can do in any dimensions. It's not

really what I would have only in one dimension. And the partition function, you have

seen, is the sum over all graphs, where t to the number of bonds in graph is called

g.

Now I can do the same kind of expansion that I did over here. If I multiply with an

additional sigma m sigma n, it is just like I have already a sigma m and a sigma n

somewhere. And when I sum over sigmas, I have to make sure that these things

don't average to 0.

So what I need to do is to draw graphs that have an even number at all sites and an

odd number at these two sites. All right? So this is sum over g with even number
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odd number at these two sites. All right? So this is sum over g with even number

except on m and n, where you have to have an odd number, and t is subset of

graphs. OK?

So if I do this for the 1D model, sigma m sigma n, I have to draw graphs that have,

essentially, an odd number. Essentially, sigma m and sigma n should be the origins

or ends of lines. And clearly, I can draw a graph that connects these two. And so

what I will get is t to the number of steps that I have to make between the two of

them.

The rest of the it is going to be the same, 2 to the N cosh K to the N minus 1 in the

numerator and denominator, they cancel each other. OK? So you can see explicitly

that this is a function that decays since t is less than 1 as I go further and further

out. And that it is a pure exponential.

So you remember that we said in general you would have a power law line in front

that would have an exponent [? theta. ?] And when we did r of g, I told you, well, [?

theta ?] came out to be 1 such that you have pure exponential.

Well, here is the proof. And furthermore, from this we see that c is minus 1 over log

of the hyperbolic tanh of K. And if you expand that, you will find that as K goes to

infinity, it has precisely that e to the 2K divergence that we had calculated.

So you can see that calculating things using this graphical method is very simple.

And essentially, the interpretation of t is that it is the fidelity with which information

goes from one site to the next site. And so the further away you go every time, you

lose a factor of t in how sure you are about the nature of where you started with.

And so as you go further, you have this exponential decay. OK?

And the other thing that we can do at no cost is periodic boundary conditions. So we

take, again, our spins 1, 2, 3, except that we then bend it such that the last one

comes and gets connected to the first one. OK? So what's the partition function in

this case? It is 2 to the N.

The number of bonds, in this case, is exactly the same as the number of sites. It's
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one more than before, so I get to cosh K raised to the power of N. And then is it just

one? There is one thing that goes all the way around, so I have 1 plus t to the N. So

this is an exponentially small correction as we go further and further out. You can

kind of regard that as some finite-size interaction.

I can similarly calculate sigma m sigma n, the expectation value. OK? And in the

denominator from the partition function, I have this factor of 1 to the t to the N. In

the numerator, again, you should be able to see two graphs. We can either connect

this way or we can connect that way. So you'll have t to the power of n minus m, but

you don't know which angle is the smaller one, so you'll have to also include the

other one. OK?

So again, if we take N to infinity and these two sufficiently close, you can see that all

of these finite-size effects, boundary effects, et cetera disappear. But this is, again,

a toy model in which to think about what the effects of boundaries is, et cetera. You

can see how nicely this graphical method can enable you to calculate things very

rapidly. We'll see that, again, it provides the right tools conceptually to think about

what happens in higher dimensions.
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