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II.G Gaussian Integrals 

In the previous section, the energy cost of fluctuations was calculated at quadratic 

order. These fluctuations also modify the saddle point free energy. Before calculating 

this modification, we take a short (but necessary) mathematical diversion on performing 

Gaussian integrals. 

The simplest Gaussian integral involves one variable φ, 

∫ ∞ 

φ2+hφ 2π h2 

2 eI1 = 
−∞ 

dφ e−
K 

= 
K 

2K . (II.54) 

By taking derivatives of the above expression with respect to h, integrals involving powers 

of φ are generated; e.g. 

h2 

2 2K 
d 

: 

∫ ∞ 

dφ φ e−
K φ2+hφ =

2π
e 

h
,

dh −∞ K 
· 
K

√

[ ] 

(II.55) 
d2 ∫ ∞

−
K φ2+hφ 2π h2 1 h2 
2 2K: dφ φ2 e = e + . 

dh2 
−∞ K 

· 
K K2 

If the integrand represents the probability density of the random variable φ, the above 

integrals imply the moments 〈φ〉 = h/K, and 〈φ2〉 = h2/K2 + 1/K. The corresponding 

cumulants are 〈φ〉c = 〈φ〉 = h/K, and 〈φ2〉c = 〈φ2〉 − 〈φ〉2 = 1/K. In fact all higher order 

cumulants of the Gaussian distribution are zero since 

∞ [ ] 

〈 

e −ikφ
〉 

≡ exp 
∑ (−ik)ℓ 

〈 

φℓ
〉 

= exp −ikh − k2 

. (II.56) 
ℓ! c 2K 

ℓ=1 

Now consider the following Gaussian integral involving N variables, 

  

IN = 

∫ ∞ N 

dφi exp − K

2 
i,j 

φiφj + hiφi
 . (II.57) 

−∞ i=1 i,j i 

It can be reduced to a product of N one dimensional integrals by diagonalizing the matrix 

K ≡ Ki,j . Since we need only consider symmetric matrices (Ki,j = Kj,i), the eigenvalues 

are real, and the eigenvectors can be made orthonormal. Let us denote the eigenvectors 

and eigenvalues of K by q̂ and Kq respectively, i.e. Kq̂ = Kqq̂. The vectors {q̂} form a 

new coordinate basis in the original N dimensional space. Any point in this space can be 

represented either by coordinates {φi}, or φ̃q with φi = φ̃q q̂i. We can now change q 
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∫ 
[ ] 

√ [ ] 

∏ 

√ 

∑ ∑ 

∑ 

[ ] 

∑ 

the integration variables from {φi} to φ̃q . The Jacobian associated with this unitary 

transformation is unity, and 

∏ 

N K−1 

IN = 
N ∞ 

dφ̃q exp 
Kq

φ̃q 
2 + h̃qφ̃q = 

∏ 2π 
exp 

h̃q q h̃q 
. (II.58) −

2 Kq 2 
q=1 −∞ q=1 

The final expression can be represented in terms of the original coordinates by using 

the inverse matrix K−1, such that K−1K = 1. Since the determinant of the matrix is 

independent of the choice of basis, detK = q Kq, and 

  

(2π)N K−1 

IN = exp 
∑ 

i,j 
hihj

 . (II.59) 
det K 2 

i,j 

Regarding {φi} as Gaussian random variable distributed with a joint probability distri­

bution function proportional to the integrand of eq.(II.57), the joint characteristic function 

is given by 
  

〈

∑ 

〉 

K−1 
−i kj φj K−1 i,j 

e j = exp −i i,j hikj − kikj
 . (II.60) 

2 
i,j i,j 

Moments of the distribution are obtained from derivatives of the characteristic function 

with respect to ki, and cumulants from derivatives of its logarithm. Hence, eq.(II.60) 

implies 
 

 K−1 
 

〈φi〉c = i,j hj 

j . (II.61) 
 

 K−1 〈φiφj〉c = i,j 

Another useful form of eq.(II.60) is 

〈exp(A)〉 = exp 〈A〉c +
2

1 〈A2 〉c , (II.62) 

where A = i aiφi is any linear combination of Gaussian distributed variables. We used 

this result earlier in computing the order parameter correlations in the presence of phase 

fluctuations in a superfluid. 

Gaussian functional integrals are a limiting case of the above many variable integrals. 

Consider the points i as the sites of a d–dimensional lattice and let the spacing go to zero. 
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∫ 

∫ 

∫ ∫ 

∫ 

In the continuum limit, {φi} go over to a function φ(x), and the matrix Kij is replaced by 

a kernel K(x,x ′ ). The natural generalization of eq.(II.59) is 

∫ ∞ ∫ ∫ 

−∞ 

Dφ(x) exp − dd xdd x ′ 
K(x,x ′ )

φ(x)φ(x ′ ) + dd xh(x)φ(x)
2 

[
∫ 

] (II.63) 

∝ (detK)−1/2 exp dd xdd x ′ 
K−1(x,x ′ )

h(x)h(x ′ ) ,
2 

where the inverse kernel K−1(x,x ′ ) satisfies 

dd x ′ K(x,x ′ )K−1(x ′ ,x ′′ ) = δd(x − x ′′ ). (II.64) 

The notation Dφ(x) is used to denote the functional integral. There is a constant of 

proportionality, (2π)N/2, left out of eq.(II.63). Although formally infinite in the continuum 

limit of N → ∞, it does not effect the averages that are obtained as derivatives of such 

integrals. In particular, for Gaussian distributed functions, eq.(II.61) generalizes to 

 

 〈φ(x)〉c = dd x ′ K−1(x,x ′ )h(x ′ ) 
. (II.65) 

 〈φ(x)φ(x ′ )〉c = K−1(x,x ′ ) 

In dealing with small fluctuations to the Landau–Ginzburg Hamiltonian, we encoun­

tered the quadratic form 

dd x[(∇φ)2 + φ2/ξ2] ≡ dd xdd x ′ φ(x ′ )δd(x − x ′ )(−∇ 2 + ξ−2)φ(x), (II.66) 

which implies the kernel 

K(x,x ′ ) = Kδd(x − x ′ )(−∇ 2 + ξ−2). (II.67) 

Following eq.(II.64), the inverse kernel satisfies 

K dd x ′′ δd(x − x ′′ )(−∇ 2 + ξ−2)K−1(x ′′ − x ′ ) = δd(x ′ − x), (II.68) 

which implies the differential equation 

K(−∇ 2 + ξ−2)K−1(x) = δd(x). (II.69) 

Comparing with eq.(II.44) implies K−1(x) = 〈φ(x)φ(0)〉 = −Id(x)/K, as obtained before 

by a less direct method. 
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∫ 

∫ ∫ 

∫ 

∫ 

II.H Fluctuation Corrections to the Saddle Point


We can now examine how fluctuations around the saddle point solution modify the free 

energy, and other macroscopic properties. Starting with eq.(II.35), the partition function 

including small fluctuations is 

[ ( )] { [ ]} 

Z ≈ exp −V 
2 

t
m̄2 + um̄4 Dφℓ(x) exp − K 

2 
dd x (∇φℓ)

2 + 
φ

ξℓ 
2

2 
ℓ 

∫ 
{

∫
[ ]} 

(II.70) 

· Dφt(x) exp − K 

2 
dd x (∇φt)

2 + 
φ

ξt 
2 
t 
2 

. 

Each of the Gaussian kernels is diagonalized by the Fourier transforms 

φ̃(q) = dd x exp (−iq x) φ(x)/
√

V ,· 

and with corresponding eigenvalues K(q) = K(q2 + ξ−2). The resulting determinant of K 

is a product of such eigenvalues, and hence 

ln detK = 
∑ 

ln K(q) = V
dd q 

ln[K(q 2 + ξ−2)]. (II.71) 
(2π)d 

q 

The free energy resulting from eq.(II.70) is then given by 

2f = − ln
V

Z 
= 

tm̄

2 

2 

+ um̄4 + 
2

1 

(2

d

π

d q 
)d 

ln[K(q 2 + ξℓ 
−2)] + 

n −
2

1 

(2

d

π

d q 
)d 

ln[K(q + ξt 
−2)]. 

(II.72) 

(Note that there are n−1 transverse components.) Using the dependance of the correlation 

lengths on reduced temperature, the singular part of the heat capacity is obtained as 

 

 n dd q 1 
 

 0 + for t > 0 
∂2f 2 (2π)d (Kq2 + t)2 

Csingular ∝ − 
∂2t 

= 


∫ 

dd 
. (II.73) 

1 q 1 
 

 + 2 for t < 0
 

8u (2π)d (Kq2 − 2t)2 

The correction terms are proportional to 

1 dd q 1 
CF = 

K2 (2π)d (q2 + ξ−2)2
. (II.74) 

The integral has dimensions of (length)4−d, and changes behavior at d = 4. For d > 4 

the integral diverges at large q, and is dominated by the upper cutoff Λ ≃ 1/a, where a is 
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the lattice spacing. For d < 4, the integral is convergent in both limits. It can be made 

dimensionless by rescaling q by ξ−1, and is hence proportional to ξ4−d . Therefore 

1 a 4−d for d > 4 
CF ≃ . (II.75) 

K2 
ξ4−d for d < 4 

In dimensions d > 4, fluctuation corrections to the heat capacity add a constant 

term to the background on each side of the transition. However, the primary form of the 

singularity, a discontinuity in C, is not changed. For d < 4, the divergence of ξ ∝ t−1/2 , 

at the transition leads to a correction term from eq.(II.75) which is more important than 

the original discontinuity. Indeed, the correction term corresponds to an exponent α = 

(4−d)/2. However, this is only the first correction to the saddle point result. The diverge 

of CF merely implies that the saddle point conclusions are no longer reliable in dimensions 

d ≤ 4, called the upper critical dimension. Although we obtained this dimension by 

looking at the fluctuation corrections to the heat capacity, we would have reached the same 

conclusion in examining the singular part of any other quantity, such as magnetization or 

susceptibility. The contributions due to fluctuations always modify the leading singular 

behavior, and hence the critical exponents, in dimensions d ≤ 4. 

II.I The Ginzburg Criterion 

We have thus established the importance of fluctuations, and identified them as the 

probable reason for the failure of the saddle point approximation to correctly describe 

the observed exponents. However, as noted in sec.II.G, there are some materials, such as 

superconductors, in which the experimental results are well fitted to the singular forms 

predicted by this approximation. Can we quantify why fluctuations are less important in 

superconductors than in other phase transitions? 

Eq.(II.75) indicates that fluctuation corrections become important due to the diver­

gence of the correlation length. Within the saddle point approximation, the correlation 

length diverges as ξ ≈ ξ0|t|−1/2, where t = (Tc − T )/Tc is the reduced temperature, and 

ξ0 ≈
√

K is a microscopic length scale. In principal, ξ0 can be measured experimentally 

from fitting scattering line shapes. It has to approximately equal the size of the units that 

undergo ordering at the phase transition. For the liquid–gas transition, ξ0 can be estimated 

as (vc)
1/3, where vc is the critical atomic volume. In superfluids, ξ0 is approximately the 

thermal wavelength λ(T ). Both these estimates are of the order of a few atomic spacings, 

1–10Å. On the other hand, the underlying unit for superconductors is a Cooper pair. The 
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paired electrons are forced apart by their Coulomb repulsion, resulting in a relatively large 

separation of ξ0 ≈ 103Å. 

The importance of fluctuations can be gauged by comparing the two terms in 

eq.(II.73); the saddle point discontinuity ΔCS.P. 1/u, and the correction term CF .∝ 
Since K ∝ ξ0

2, the correction term is proportional to ξ−dt−(4−d)/2 . Thus fluctuations are 0 

important provided, 

2ξ0 
−dt−

4−d ≫ ΔCS.P., = ⇒ |t| ≪ tG ≃
(ξdΔCS

1 

.P.) 
2 . (II.76) 

4−d 
0

The above requirement is known as the Ginzburg criterion. Naturally in d < 4, it is 

satisfied sufficiently close to the critical point. However, the resolution of the experiment 

may not be good enough to get closer than the Ginzburg reduced temperature tG. If so, 

the apparent singularities at reduced temperatures t > tG may show saddle point behavior. 

It is this apparent discontinuity that then appears in eq.(II.76), and may be used to self– 

consistently estimate tG. Clearly, ΔCS.P. and ξ0 can both be measured in dimensionless 

units; ξ0 in units of atomic size a, and ΔCS.P. in units of NkB. The latter is of the order of 

unity for most transitions, and thus tG ≈ ξ−6 in d = 3. In cases where ξ0 is a few atomic 0 

spacings, a resolution of tG ≈ 10−1 − 10−2 will suffice. However, in superconductors with 

ξ0 ≈ 103a, a resolution of tG < 10−18 is necessary to see any fluctuation effects. This 

is much beyond the ability of current apparatus. The newer ceramic high temperature 

superconductors have a much smaller coherence length of ξ0 ≈ 10a, and they indeed show 

some effects of fluctuations. 

Again, it is worth emphasizing that a similar criterion could have been obtained by 

examining any other quantity. Fluctuations corrections become important in measurement 

of a quantity X for t ≪ tG(X) ≃ A(X)ξ
−2d/(4−d) 

However, the coefficient A(X) may be 0 . 

different (by one or two orders of magnitude) for different quantities. So, it is in principle 

possible to observe saddle point behavior in one quantity, while fluctuations are important 

in another quantity measured at the same resolution. Of course, fluctuations will always 

become important at sufficiently high resolutions. 

A summary of the results obtained so far from the Landau–Ginzburg approach is as 

follows: 

• For dimensions d greater than an upper critical dimension of du = 4, the saddle point 

approximation is valid, and singular behavior at the critical point is described by exponents 

α = 0, β = 1/2, γ = 1, ν = 1/2, .· · ·
• For d less than a lower critical dimensions (dℓ = 2 for continuous symmetry, and dℓ = 1 

for discrete symmetry) fluctuations are strong enough to destroy the ordered phase. 

• In the intermediate dimensions, dℓ ≤ d ≤ du, fluctuations are strong enough to change 

the saddle point results, but not sufficiently important to completely destroy order. Un­

fortunately, or happily, this is the case of interest to us in d = 3. 
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