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II.D Scattering and Fluctuations 

In addition to bulk thermodynamic experiments, scattering measurements can be used 

to probe microscopic fluctuations at length scales of the order of the probe wavelength λ. 

In a typical set up, a beam of wavevector ki is incident upon the sample and the scattered 

intensity is measured at wavevector ks = ki +q. For elastic scattering, |ki| = |ks| ≡ k, and 

q ≡ |q| = 2k sin θ, where θ is the angle between incident and scattered beams. Standard 

treatments of scattering start with the Fermi Golden Rule, and usually lead to a scattering 

amplitude of the form 

A(q) ∝ 〈ks ⊗ f |U|ki ⊗ i〉 ∝ σ(q) dd xe iq.xρ(x). (II.31) 

In the above expression, |i〉 and |f〉 refer to the initial and final states of the microscopic 

scattering element (the atom or ion), U is the scattering potential that can be decomposed 

as a sum due to the various scattering elements in the sample. The amplitude has a local 

form factor σ(q) describing the scattering from an individual element. For our purposes, 

the more interesting global information is contained in ρ(q), the Fourier transform of the 

global density of scatterers ρ(x). The appropriate scattering density depends on the nature 

of the probe. Light scattering senses the actual atomic density, electron scattering measures 

the charge density, while neutron scattering is usually used to probe the magnetization 

density. Most such probes actually do not look at a snapshot of the system, but look at 

time averaged configurations. Thus the observed scattering intensity is 

S(q) ∝ 〈|A(q)| 2 〉 ∝ 〈|ρ(q)| 2 〉. (II.32) 

Here 〈•〉 indicates the thermal average of , which can be used in place of the time average •
in most cases due to ergodicity. 

Eq.(II.32) indicates that a uniform density only leads to forward scattering (q = 

0), while the long–wavelength fluctuations can be studied by working at small angles 

or with small k. If scattering is caused by the magnetization density, we can use the 

Landau–Ginzburg Hamiltonian to compute its intensity. The probability of a particular 

configuration is given by 

m(x)] ∝ exp dd x 
K 

(∇m)2 + 
t
m 2 + um 4 . (II.33) P [~ − 

2 2 
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As discussed earlier, the most probable configuration is uniform, with m~ (x) = m̄ê1, where 

ê1 is a unit vector (m̄ is zero for t > 0, and equal to −t/4u for t < 0). We can examine 

small fluctuations around such a configuration by setting 

n 

~ = ¯ e1 + φt,α(x)êα, (II.34) m(x) [m + φℓ(x)]ˆ
α=2 

where φℓ and φt refer to longitudinal and transverse fluctuations respectively. The latter 

can take place along any of the n−1 directions perpendicular to the average magnetization. 

After the substitution of eq.(II.34), the terms appearing in the Landau–Ginzburg 

Hamiltonian can be expanded to second order as 

(∇m)2 = (∇φℓ)
2 + (∇φt)

2 , 

m 2 = m 2 + 2mφℓ + φ2 
t ,¯ ¯ ℓ + φ2 

m 4 = m̄4 + 4m̄3φℓ + 6m̄2φ2 
ℓ + 2m̄2φ2 + O(φℓ

3, φ3 
t ),t 

resulting in a quadratic energy cost 

t 
∫ 

K t + 12um̄2 

βH ≡ − lnP =V 
2 
m̄2 + um̄4 + dd x 

2
(∇φℓ)

2 +
2 

φℓ 
2 

∫
[ ] (II.35) 
K t + 4um̄2 

+ dd x (∇φt)
2 + φt 

2 + O(φℓ
3, φt

3). 
2 2 

For uniform distortions, the longitudinal and transverse restoring potentials have “spring 

constants” given by, 

K 2 ∂2Ψ(m) 
∣ 

t for t > 0 
ξℓ 
2 ≡ t + 12um̄ = 

∂φ2 
ℓ 

∣ 

= −2t for t < 0 
, (II.36) 

m̄ 

and 
∣ 

K 2 ∂2Ψ(m) ∣ t for t > 0 
ξ2 ≡ t + 4um̄ = 

∂φ2 = 
0 for t < 0 

. (II.37) 
t t m̄

(The physical significance of the length scales ξℓ and ξt will soon become apparent.) Note 

that there is no distinction between longitudinal and transverse components for the param­

agnet (t > 0). For the ordered magnet in t < 0, there is no restoring force for the transverse 

fluctuations which correspond to the Goldstone modes discussed in the previous section. 

Following the change of variables to the Fourier modes, φ(x) = 
q φqeiq·x/

√
V , the 

probability of a particular fluctuation configuration is given by 

K 2 2 K 2 2 P [{φℓ,q; φt,q}] ∝ exp −
2

(q + ξ−2)|φℓ,q| · exp −
2

(q + ξ−2)|φt,q| . (II.38) ℓ t 

q 
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Clearly each mode behaves as a Gaussian random variable of zero mean, and the two point 

correlation functions are 
′δα,βδq,−q〈φα,qφβ,q ′ 〉 = 

K(q2 + ξα 
−2) 

, (II.39) 

where the indices refer the longitudinal, or any of the transverse components. By 

using a spin polarized source of neutrons, the relative orientations can be adjusted 

to probe either the longitudinal or the transverse correlations. The Lorentzian form, 

S(q) ∝ 1/(q2 + ξ−2), usually provides an excellent fit to scattering line shapes away from 

the critical point. Eq.(II.39) indicates that in the ordered phase, longitudinal scattering 

still gives a Lorentzian form (on top of a delta–function at q = 0 due to the spontaneous 

magnetization), while transverse scattering always grows as 1/q2 . The same power law 

decay is also predicted to hold at the critical point, t = 0. Actual experimental fits yield 

a power law of the form 
1 

S(q, T = Tc) ∝
q2−η 

, (II.40) 

with a small positive value of η. 

II.E Correlation Functions and Susceptibilities 

We can also examine the extent of fluctuations in real space. The averages 〈φα(x)〉 = 

〈mα(x) − m̄α〉, are clearly zero, and the connected correlation function is 

Gc m̄α)(mβ(x ′ ) − ¯α,β(x,x ′ ) ≡〈(mα(x) − mβ)〉 
′ ′ 

=〈φα(x)φβ(x ′ )〉 =
1 

e iq·x+iq ·x 〈φα,qφβ,q ′ 〉. (II.41) 
V 

′ q,q 

Using eq.(II.39), we obtain 

δα,β 
∑ eiq·(x−x ′ ) δα,β 

Gc ′ )α,β(x,x = 
V K(q2 + ξα 

−2) 
≡ − 

K
Id(x − x ′ , ξα), (II.42) 

q 

where in the continuum limit, 

dd q eiq·x 

Id(x, ξ) = − 
(2π)d q2 + ξ−2

. (II.43) 

Alternatively, Id is the solution to the following differential equation 

∇ 2Id(x) =
(2

d

π

d q 
)d q

q
2

2

+ 

eiq

ξ

·

−

x 

2 
= 

(2

d

π

d q 
)d 

1 −
q2 

ξ

+

−

ξ

2 

−2 
e iq·x = δd(x) + 

Id

ξ

(
2 

x) 
. (II.44) 
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The solution is spherically symmetric, satisfying 

d2Id 
+ 

d − 1 dId 
= 

Id 
+ δd(x). (II.45) 

dx2 x dx ξ2 

We can try out a solution that decays exponentially at large distances as 

Id(x) ∝ exp (

x

−
p 

x/ξ) 
. (II.46) 

(We have anticipated the presence of a subleading power law.) The derivatives of Id are 

given by 
dId p 1 

dx 
= − 

x 
+ 

ξ
Id, 

d2Id 

( 

p(p + 1) 2p 1 
) (II.47) 

= + + Id. 
dx2 x2 xξ ξ2 

For x = 0, the requirement that eq.(II.46) satisfies eq.(II.45) gives 

p(p + 1) 
+

2p 
+

1 p(d − 1) (d − 1) 
=

1 
. (II.48) 

x2 xξ ξ2 
− 

x2 
− 

xξ ξ2

The choice of ξ as the decay length ensures that the constant terms in the above equation 

cancel. The exponent p is determined by requiring the next largest terms to cancel. For 

x ≪ ξ, the 1/x2 terms are the next most important; we must set p(p + 1) = p(d − 1), 

and p = d − 2. This is the familiar exponent for Coulomb interactions, and indeed at this 

length scale the correlations don’t feel the presence of ξ, and decay as 

2−dx
Id(x) ≃ Cd(x) =

(2 − d)Sd 
(x ≪ ξ). (II.49) 

(Note that a constant term can always be added to the solution to satisfy the limits 

appropriate to the correlation function under study.) At large distances x ≫ ξ, the 1/(xξ) 

term dominates eq.(II.48), and its vanishing implies p = (d− 1)/2. Matching to eq.(II.49) 

at x ≈ ξ yields 
ξ(3−d)/2 

Id(x) ≃
(2 − d)Sdx(d−1)/2 

exp (−x/ξ) (x ≫ ξ). (II.50) 

The length scale ξ is known as the correlation length. From eq.(II.42), we observe that 

transverse and longitudinal correlations behave differently. Close to the critical point, the 

longitudinal correlation length (eq.(II.36)) behaves as 

 

t−1/2/
√

K for t > 0 
ξℓ = . (II.51) 

 

(−2t)−1/2/
√

K for t < 0 
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The singularities can be described by ξ± ≃ ξ0B±|t|−ν± , where ν± = 1/2 and B+/B− = 
√

2 

are universal, while ξ0 ∝ 1/
√

K is not. The transverse correlation length (eq.(II.37)) equals 

ξℓ for t > 0, and is infinite for all t < 0. 

Eq.(II.49) implies that right at Tc, correlations decay as 1/xd−2 . Actually, the decay 

exponent is usually indicated by 1/xd−2+η, where η is the same exponent introduced in 

eq.(II.40). Integrating the connected correlation functions results in bulk susceptibilities. 

For example, the divergence of the longitudinal susceptibility is also obtained from, 
∫ ∫ ξℓ 

χℓ ∝ dd xGℓ
c(x) ∝ 

x

d
d

d

−

x 
2 
∝ ξℓ 

2 ≃ A±t−1 . (II.52) 
0 

The universal exponents and amplitude ratios are again recovered from the above equation. 

For T < Tc, there is no upper cut-off length for transverse correlations, and the divergence 

of the transverse susceptibility can be related to the system size L, as 
∫ ∫ L ddx 

χt ∝ dd xGt
c(x) ∝ 

d−2 
∝ L2 . (II.53) 

0 x

II.F Comparison to Experiments 

The true test of the validity of the approach outlined in previous sections is in its 

comparison with experiments. A table of exponents, and the appropriate experimental 

materials is provided below. 

Transition Type Material α β γ ν 

Ferromagnets (n = 3) Fe, Ni -0.1 0.4 1.3 

Superfluid (n = 2) He4 0 0.3 1.3 0.7 

Liquid-Gas (n = 1) CO2, Xe 0.1 0.3 1.2 0.7 

Ferroelectrics TGS 0 1/2 1 1/2 

and Superconductors 

Mean–field theory 0 1/2 1 1/2 

The exponents are actually known to much better accuracy than indicated in the 

table. The final row (mean–field theory) refers to the results obtained from the saddle point 

approximation. They agree only with the experiments on ferroelectric and superconducting 

materials. The disagreement between the exponents for different values of n suggests that 

the mean–field results are too universal, and leave out some essential dependence on n (and 

d). How do we account for these discrepancies? The starting point of the Landau–Ginzburg 

Hamiltonian is sufficiently general to be trustworthy. The difficulty is in the saddle point 

method used in the evaluation of its partition function, as will become apparent in the 

following sections. 
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