
∫ 

VIII.B Equilibrium Dynamics of a Field 

The next step is to generalize the Langevin formalism to a collection of degrees of 

freedom, most conveniently described by a continuous field. Let us consider the order 

parameter field � In equilibrium, the probability to find a coarse-m(x, t) of a magnet. 

grained configuration of the magnetization field is governed by the Boltzmann weight of 

the Landau-Ginzburg Hamiltonian 

∫ [ 
r 2 4 K 2 

] 

H [�
2 
m + um +

2
(∇m) + · · · . (VIII.22) m] = dd x 

(To avoid confusion with time, the coefficient of the quadratic term is changed from t to 

r.) Clearly the above energy functional contains no kinetic terms, and should be regarded 

as the analog of the potential energy V(�x) employed in the previous section. To construct 

a Langevin equation governing the dynamics of the field �m(x), we first calculate the analo­

gous force on each field element from the variations of this potential energy. The functional 

derivative of eq.(VIII.22) yields 

m]
Fi(x) = 

δH[�
= −rmi − 4umi m 2 + K∇2 (VIII.23) −

δmi(x) 
|� | mi. 

The straightforward analog of eq.(VIII.2) is 

∂mi(x, t) 
= µFi(x) + ηi(x, t), (VIII.24) 

∂t 

with a random velocity, �η, such that 

〈ηi(x, t)〉 = 0, and 〈ηi(x, t)ηj(x ′ , t ′ )〉 = 2Dδijδ(x − x ′ )δ(t − t ′ ). (VIII.25) 

The resulting Langevin equation,


∂ �m(x, t) 2 � 2 �
= −µr�m − 4µum m + µK∇ m + �η(x, t), (VIII.26) 
∂t 

is known as the time dependent Landau-Ginzburg equation. Because of the nonlinear term 

m2 � To gain some insight into m, it is not possible to integrate this equation exactly. 

its behavior we start with the disordered phase of the model which is well described by 

the Gaussian weight with u = 0. The resulting linear equation is then easily solved by 

examining the Fourier components, 

dd iq·x �m� (q, t) = x e m(x, t), (VIII.27) 
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∫ 

�
√

which evolve according to 

∂ �m(q, t) 
= −µ(r + Kq2) m(q, t) + � (VIII.28) � η(q, t). 

∂t 

The Fourier transformed noise, 

�η(q, t) = dd x e iq·x�η(x, t), (VIII.29) 

has zero mean, 〈ηi(q, t)〉 = 0, and correlations 

2Dδijδd(x−x ′ ) δ(t−t ′ ) 
∫ 

′ ′ 

︷ ︸︸ ︷ 

〈ηi(q, t)ηj(q ′ , t ′ )〉 = dd xdd x ′ e iq·x+iq ·x 〈ηi(x, t)ηj(x ′ , t ′ )〉 
∫ (VIII.30) 

=2Dδijδ(t − t ′ ) dd x e ix·(q+q ′ ) 

=2Dδijδ(t − t ′ )(2π)dδd(q + q ′ ). 

Each Fourier mode in eq.(VIII.28) now behaves as an independent particle connected 

to a spring as in eq.(VIII.6). Introducing a decay rate 

γ(q) ≡
τ(

1 

q)
= µ(r + Kq2), (VIII.31) 

the evolution of each mode is similar to eq.(VIII.8), and follows 

∫ t 

� = m(q, 0)e −γ(q)t + dτ e−γ(q)(t−τ)�η(q, t). (VIII.32) m(q, t) �
0 

Fluctuations in each mode decay with a different relaxation time τ(q); 〈� =m(q, t)〉 
m(q, 0) exp[−t/τ(q)]. When in equilibrium, the order parameter in the Gaussain model 

is correlated over the length scale ξ = K/r. In considering relaxation to equilibrium, 

we find that at length scales larger than xi (or q ≪ 1/ξ), the relaxation time saturates 

τmax = 1/(µr). On approaching the singular point of the Gaussian model at r = 0, the 

time required to reach equilibrium diverges. This phenomena is know as critical slowing 

down, and is also present for the non-linear equation, albeit with modified exponents. The 

critical point is thus characterized by diverging length and time scales. For the critical 

fluctuations at distances shorter than the correlation length ξ, the characteristic time scale 

grows with wavelength as τ(q) ≈ (µKq2)−1 . The scaling relation between the critical 

length and time scales is described by a dynamic exponent z, as τ ∝ λz . The value of 

z = 2 for the critical Gaussian model is reminiscent of diffusion processes. 

147 



Time dependent correlation functions are obtained from 

2Dδijδ(τ1−τ2)(2π)dδd(q+q ′ ) 

〈mi(q, t)mj(q ′ , t)〉c = 

∫ t 

dτ1dτ2e 
−γ(q)(t−τ1)−γ(q ′ )(t−τ2) 〈

︷ 

ηi(q, τ1)
︸︸ 

ηj(q ′ , τ2)
︷ 

〉
0 

∫ t 

=(2π)dδd(q + q ′ ) 2Dδij dτe−2γ(q)(t−τ) 

0 

D ( ) 

=(2π)dδd(q + q ′ )δij 
γ(q)

1 − e −2γ(q)t 

t→∞ D 
.−→ (2π)dδd(q + q ′ )δij 

µ(r + Kq2) 
(VIII.33) 

However, direct diagonalization of the Hamiltonian in eq.(VIII.22) with u = 0 gives 

∫ 
ddq (r + Kq2) 2 m(q) (VIII.34) H = 

(2π)d 2 
|� | , 

leading to the equilibrium correlation functions 

〈mi(q)mj(q ′ )〉 = (2π)dδd(q + q ′ )δij 
kBT

. (VIII.35) 
r + Kq2 

Comparing equations (VIII.33) and (VIII.35) indicates that the long-time dynamics repro­

duce the correct equilibrium behavior if the fluctuation–dissipation condition, D = kBTµ, 

is satisfied. 

In fact, quite generally, the single particle Fokker-Planck equation (VIII.21) can be 

generalized to describe the evolution of the whole probability functional, P([�m(x)], t), as 

m(x)], t)∂P([�

∂t 
= − 

∫ 

dd x 
δm

δ 

i(x) 

[ 

−µ
δm

δH 
i(x)

P − D
δm

δ

i

P 
(x) 

] 

. (VIII.36) 

For the equilibrium Boltzmann weight 

m(x)] Peq.[� exp 

[ 

−H[�
] 

, (VIII.37) m(x)] ∝ 
kBT 

the functional derivative results in 

δPeq. 
=

1 δH 
. (VIII.38) 

δmi(x) 
−

kBT δmi(x)
Peq.

The total probability current, 

J [h(x)] = 

[ 

−µ
δm

δ

i

H 
(x)

+ 
kB

D

T δm

δ

i

H 
(x) 

] 

Peq., (VIII.39) 

vanishes if the fluctuation–dissipation condition, D = µkBT , is satisfied. Once again, the 

Einstein equation ensures that the equilibrium weight indeed describes a steady state. 
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VIII.C Dynamics of a Conserved field 

In fact it is possible to obtain the correct equilibrium weight with q dependent mobility 

and noise, as long as the generalized fluctuation–dissipation condition, 

D(q) = kBTµ(q), (VIII.40) 

holds. This generalized condition is useful in considering the dissipative dynamics of a 

conserved field. The prescription that leads to the Langevin equations (VIII.23)–(VIII.25), 

does not conserve the field in the sense that 
∫ 

ddx�m(x, t) can change with time. (Although 

this quantity is on average zero for r > 0, it undergoes stochastic fluctuations.) If we are 

dealing with the a binary mixture (n = 1), the order parameter which measures the 

difference between densities of the two components is conserved. Any concentration that 

is removed from some part of the system must go to a neighboring region in any realistic 

dynamics. Let us then consider a dynamical process constrained such that 

d 
∫ 

dd xm� (x, t) = 

∫ 

dd x 
∂ �m(x, t)

= �0. (VIII.41) 
dt ∂t 

How can we construct a dynamical equation that satisfies eq.(VIII.41)? The integral clearly 

vanishes if the integrand is a total divergence, i.e. 

∂mi(x, t) 

∂t 
= −∇ · ji + ηi(x, t). (VIII.42) 

The noise itself must be a total divergence, ηi = σi, and hence in Fourier space, −∇ · 

〈ηi(q, t)〉 = 0, and 〈ηi(q, t)ηj(q ′ , t ′ )〉 = 2Dδijq 
2δ(t − t ′ )(2π)dδd(q + q ′ ). (VIII.43) 

We can now take advantage of the generalized Einstein relation in eq.(VIII.40) to ensure 

the correct equilibrium distribution by setting, 

ji = µ∇ · 
( 

−
δm

δH 
i(x) 

) 

. (VIII.44) 

The standard terminology for such dynamical equations is provided by Hohenberg and 

Halperin: In model A dynamics the field �m is not conserved, and the mobility and 

diffusion coefficients are constants. In model B dynamics the field �m is conserved, and 

µ̂ = −µ∇2 and D̂ = −D∇2 . 
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Let us now reconsider the Gaussian model (u = 0), this time with a conserved order 

parameter, with model B dynamics 

∂ �m(x, t) 2 � 4 �= µr∇ m − µK∇ m + �η(x, t). (VIII.45) 
∂t 

The evolution of each Fourier mode is given by 

∂ �m(q, t) m(q, t) 

∂t 
= −µq 2(r + Kq2)m� (q, t) + �η(q, t) ≡ − �

τ(q)
+ �η(q, t). (VIII.46) 

Because of the constraints imposed by the conservation law, the relaxation of the field 

is more difficult, and slower. The relaxation times diverge even away from criticality. 

Depending on wavelength, we find scaling between length and time scales with dynamic 

exponents z, according to 

1 
{ 

q−2 for q ≪ ξ−1 (z = 2) 
τ(q) = −4 . (VIII.47) 

µq2(r + Kq2) 
≈ 

q for q ≫ ξ−1 (z = 4) 

The equilibrium behavior is unchanged, and 

〈 
2
〉 Dq2 nD 

lim � = n = , (VIII.48) 
t→∞ 

|m(q, t)|
µq2(r + Kq2) µ(r + Kq2)

as before. Thus the same static behavior can be achieved by different dynamics. The 

static exponents (e.g. ν) are determined by the equilibrium (stationary) state and are 

unchanged, while the dynamic exponents may be different. As a result, dynamical critical 

phenomena involve many more universality classes than the corresponding static ones. 
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