
VIII. Dissipative Dynamics 

VIII.A Brownian Motion of a Particle 

Observations under a microscope indicate that a dust particle in a liquid drop under­

goes a random jittery motion. This is because of the random impacts of the much smaller 

fluid particles. The theory of such (Brownian) motion was developed by Einstein in 1905 

and starts with the equation of motion for the particle. The displacement ~x(t), of a particle 

of mass m is governed by, 

m~x ¨ = − ~
µ

ẋ − ∂
∂~

V 
x 

+ f~random(t). (VIII.1) 

The three forces acting on the particle are: 

(i) A friction force due to the viscosity of the fluid. For a spherical particle of radius R, 

the mobility in the low Reynolds number limit is given by µ = ηR)−1, where ¯(6π¯ η is 

the specific viscosity. 

(ii) The force due to the external potential V(~x), e.g. gravity. 

(iii) A random force of zero mean due to the impacts of fluid particles. 

The viscous term usually dominates the inertial one (i.e. the motion is overdamped), 

and we shall henceforth ignore the acceleration term. Eq.(VIII.1) now reduces to a 

Langevin equation, 

~ẋ = ~v(~x) + ~η(t), (VIII.2) 

where ~v(~x) = −µ∂V/∂~x is the deterministic velocity. The stochastic velocity, ~η(t) = 

µf~random(t), has zero mean, 

�~η(t)� = 0. (VIII.3) 

It is usually assumed that the probability distribution for the noise in velocity is Gaussian, 

i.e. 
[ ∫ 

η(τ)2 ] 

P [~η(t)] ∝ exp − dτ 
4D

. (VIII.4) 

Note that different components of the noise, and at different times, are independent, and 

the covariance is 

�ηα(t)ηβ(t ′ )� = 2Dδα,βδ(t − t ′ ). (VIII.5) 
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The parameter D is related to diffusion of particles in the fluid. In the absence of any 

potential, V(~x) = 0, the position of a particle at time t is given by 

∫ t 

~x(t) = ~x(0) + dτ~η(τ). 
0 

Clearly the separation ~x(t) − ~x(0) which is the sum of random Gaussian variables is itself 

Gaussian distributed with mean zero, and a varaince 

〈 
2
〉 ∫ t 

(~x(t) − ~x(0)) = dτ1dτ2 �~η(τ1) ~η(τ2)� = 3 × 2Dt. · 

For an ensemble of particles released at ~x(t) = 0, i.e. with P (~x, t = 0) = δ3(~x), the 

particles at time t are distributed according to 

0 

( )3/2 [ 
2 ]

1 xP (~x, t) = √
4πDt 

exp −
4Dt 

, 

which is the solution to the diffusion equation 

∂P 
D∇2P.= 

∂t 

A simple example is provided by a particle connected to a Hookian spring, with 

V(~x) = Kx2/2. The deterministic velocity is now ~v(~x) = −µK~x, and the Langevin 

equation, ~ẋ = −µK~x + η~(t), can be rearranged as 

d [ 
eµKt~x(t)

] 
= eµKt~η(t). (VIII.6) 

dt 

Integrating the equation from 0 to t yields 

∫ t 

eµKt~x(t) − ~x(0) = dτeµKτη~(τ), (VIII.7) 
0 

and 
∫ t 

~x(t) = ~x(0)e −µKt + dτe−µK(t−τ)~η(τ). (VIII.8) 
0 

Averaging over the noise indicates that the mean position, 

�~x(t)� = ~x(0)e −µKt, (VIII.9) 
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∫ 

decays with a characteristic relaxation time, τ = 1/(µK). Fluctuations around the mean 

behave as 

2Dδ(τ1−τ2)×3 
〈( )2

〉 ∫ t ︷ ︸︸ ︷ 

~x(t) − �~x(t)� = 
0 

dτ1dτ2e 
−µK(2t−τ1−τ2) �~η(τ1) · ~η(τ2)� 

∫ t 

=6D dτe−2µK(t−τ) (VIII.10) 

0 

3D [ −2µKt
] t→∞ 3D 

= e . 
µK 

1 − −→ 
µK 

However, once the dust particle reaches equilibrium with the fluid at a temperature T , its 

probability distribution must satisfy the normalized Boltzmann weight 

( 
K 

)3/2 [ 
Kx2 ] 

Peq.(~x) =
2πkBT 

exp −
2kBT

, (VIII.11) 

yielding 
〈 
x2

〉 
= 3kBT/K. Since the dynamics is expected to bring the particle to equilib­

rium with the fluid at temperature T , eq.(VIII.10) implies the condition 

D = kBTµ . (VIII.12) 

This is the Einstein relation connecting the fluctuations of noise to the dissipation in the 

medium. 

Clearly the Langevin equation at long times reproduces the correct mean and variance 

for a particle in equilibrium at a temperature T in the potential V(~x) = Kx2/2, provided 

that eq.(VIII.12) is satisfied. Can we show that the whole probability distribution evolves 

to the Boltzmann weight for any potential? Let P(~x, t) ≡ �~x|P(t)|0� denote the probability 

density of finding the particle at ~x at time t, given that it was at 0 at t = 0. This probability 

can be constructed recursively by noting that a particle found at ~x at time t+ ǫ must have 

′ arrived from some other point ~x at t. Adding up all such probabilities yields 

P(~x, t + ǫ) = d3~x ′ P(~x ′ , t) �~x|Tǫ|~x ′ �, (VIII.13) 

′ ′ where �~x|Tǫ|~x � ≡ �~x|P(ǫ)|~x � is the transition probability. For ǫ ≪ 1, 

′ ~x = ~x + ~v (~x ′ )ǫ + ~ηǫ , (VIII.14) 
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〈 ∣ ∣ 〉 

∣ ∣

[ ] 

where ~ηǫ = 
∫

t

t+ǫ 
dτ~η(τ). Clearly, �η~ǫ� = 0, and 

〈
ηǫ 
2
〉 

= 2Dǫ × 3, and following eq.(VIII.4), 

( 
1 

)3/2 [ 
ηǫ 
2 ] 

p(~ηǫ) = exp . (VIII.15) 
4πDǫ 

−
4Dǫ 

The transition rate is simply the probability of finding a noise of the right magnitude 

according to eq.(VIII.14), and 

′ 

( 
1 

)3/2 
[ 

(~x − ~x ′ − ǫ~v(~x ′ ))
2 
] 

�~x |T (ǫ)|~x � = p(ηǫ) =
4πDǫ 

exp − 
4Dǫ 

( )3/2 

 (

~̇ v(~x) 
)2  

(VIII.16) 
1  

x − ~


= exp .
4πDǫ 

−ǫ 
4D 

By subdividing the time interval t, into infinitesimal segments of size ǫ, repeated 

application of the above evolution operator yields 

P(~x, t) = ~x 
∣
T (ǫ)t/ǫ∣ 0 

 ( )2  

= 

∫ (~x,t) D~x(τ)
exp 


∫ t 

dτ 
~ẋ − ~v(~x) 



. 

(VIII.17) 

N − 
4D(0,0) 0 

The integral is over all paths connecting the initial and final points; each path’s weight 

is related to its deviation from the classical trajectory, ~ẋ = ~v(~x). The recursion relation 

(eq.(VIII.13)), 

∫ ( )3/2 
[ 

′ 2 
] 

P(~x, t) = d3~x ′ 
1 

exp 
(~x − ~x − ǫ~v(~x ′ )) P(~x ′ , t − ǫ), (VIII.18) 

4πDǫ 
− 

4Dǫ 

can be simplified by the change of variables, 

~y =~x ′ + ǫ~v(~x ′ ) − ~x = ⇒ 
′ 
( ) (VIII.19) 

d3~y =d3~x ′ (1 + ǫ∇ ~v(~x ′ )) = d3~x 1 + ǫ∇ ~v(~x) + O(ǫ2) .· · 
Keeping only terms at order of ǫ, we obtain 

4Dǫ P(~x, t) = [1 − ǫ∇ ~v(~x)] 

∫ 

d3~y 

( 
1 

)3/2 

e − y 2 

P(~x + ~y − ǫ~v(~x), t − ǫ)· 
4πDǫ 

∫ ( 
1 

)3/2 
2


= [1 − ǫ∇ · ~v(~x)] d3~y 
4πDǫ 

− y ×
e 4Dǫ 

P(~x, t) + (~y − ǫ~v(~x)) · ∇P + 
yiyj − 2ǫyi

2 

vj + ǫ2vivj ∇i∇jP − ǫ
∂

∂t 

P
+ O(ǫ2) 

= [1 − ǫ∇ · ~v(~x)] 

[ 

P − ǫ~v · ∇ + ǫD∇2P − ǫ
∂

∂t 

P
+ O(ǫ2) 

] 

. 

(VIII.20) 
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Equating terms at order of ǫ leads to the Fokker-Planck equation,


∂

∂t 

P
+ ∇ · J~ = 0, with J~ = ~v P − D∇P . (VIII.21) 

The Fokker-Planck equation is simply the statement of conservation of probability. The 

probability current has a deterministic component ~v P , and a stochastic part −D∇P . A 

stationary distribution, ∂P/∂t = 0, is obtained if the net current vanishes. It is now 

easy to check that the Boltzmann weight, Peq.(~x) ∝ exp[−V(~x)/kBT ], with ∇Peq. = 

~v Peq./(µkBT ), leads to a stationary state as long as the fluctuation–dissipation condition 

in eq.(VIII.12) is satisfied. 
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