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VII. Continuous Spins at Low Temperatures


VII.A The non-linear σ-model 

Previously we considered low temperature expansions for discrete spins (Ising, Potts, 

etc.), in which the low energy excitations are droplets of incorrect spin in a uniform back­

ground selected by broken symmetry. These excitations occur at small scales, and are 

easily described by graphs on the lattice. By contrast, for continuous spins, the lowest 

energy excitations are long-wavelength Goldstone modes, as discussed in section II.C. The 

thermal excitation of these modes destroys the long-range order in dimensions d ≤ 2. For 

d close to 2, the critical temperature must be small, making low temperature expansions 

a viable tool for the study of critical phenomena. As we shall demonstrate next, such an 

approach requires keeping track of the interactions between Goldstone modes. 

Consider unit n-component spins on the sites of a lattice, i.e. 

~s (i) = (s1, s2, · · · , sn), with |~s (i)| 2 = s 21 + · · · + s 2 n = 1. (VII.1) 

The usual nearest neighbor Hamiltonian can be written as


−βH = K 
� 

~s (i) · ~s (j) = K 
� 

1 − (~s (i) −
2 

~s (j))2 
. (VII.2) 

〈ij〉 〈ij〉 

At low temperatures, the fluctuations between neighboring spins are small and the differ­

ence in eq.(VII.2) can be replaced by a gradient. Assuming a unit lattice spacing, 

−βH = −βE0 − K dd x (∇~s (x))
2 
, (VII.3) 

2 

where the discrete index i has been replaced by a continuous vector x d . A cutoff ∈ ℜ
of Λ ≈ π is thus implicit in eq.(VII.3). Ignoring the ground state energy, the partition 

function is 
K 

Z = D 
� 
~s (x)δ 

� 
s(x)2 − 1 

�� 
e− 2 dd x(∇�s )2 

. (VII.4) 

A possible ground state configuration is ~s (x) = (0, , 1). There are n − 1 Goldstone · · · 
modes describing the transverse fluctuations. To examine the effects of these fluctuations 

close to zero temperature, set 

~s (x) = (π1(x), , πn−1(x), σ(x)) ≡ (~π (x), σ(x)) , (VII.5) · · · 
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where ~π (x) is an n − 1 component vector. The unit length of the spin fixes σ(x) in terms 

of ~π (x). For each degree of freedom 

d~s δ(s 2 − 1) = 
∞ 

d~π dσδ 
� 
π2 + σ2 − 1 

� 

� −∞ 
� 

�� �� �� ∞ ∞ d~π 
= d~π dσδ σ − 1 − π2 σ + 1 − π2 =

2
√

1 − π2 
, 

−∞ −∞ 
(VII.6) 

where we have used the identity δ(ax) = δ(x)/ a . Using this result, the partition function | |
in eq.(VII.4) can be written as 

K 

Z ∝ � 
1

D
−
~π (

π

x

(

) 

x)2 
e
−

2 dd x (∇�π )2+(∇
√

1−π2 )
2 

� �
�

� �� (VII.7) 
K K � � �2 ρ 

= D~π (x) exp − dd x 
2

(∇~π )2 +
2 

∇ 1 − π2 +
2

ln(1 − π2) . 

In going from the lattice to the continuum, we have introduced a density ρ = N/V = 1/ad 

of lattice points. For unit lattice spacing ρ = 1, but for the purpose of renormalization 

we shall keep an arbitrary ρ. Whereas the original Hamiltonian was quite simple, the 

one describing the Goldstone modes ~π (x), is rather complicated. In selecting a particular 

ground state, the rotational symmetry was broken. The nonlinear terms in eq.(VII.7) 

ensure that this symmetry is properly reflected when considering only ~π. 

We can expand the nonlinear terms for the effective Hamiltonian in powers of ~π (x), 

resulting in a series 

βH[~π (x)] = βH0 + U1 + U2 + , (VII.8) · · · 

where 

βH0 = 
K

dd x(∇~π )2 , (VII.9) 
2 

describes independent Goldstone modes, while 

U1 = dd x 
K 

2
(~π · ∇~π )2 − ρ 

2 
π2 , (VII.10) 

is the first order perturbation when the terms in the series are organized according to 

powers of T = 1/K. Since we expect fluctuations π2 ∝ T , βH0 is order of one, the two 
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terms in U1 are order of T ; remaining terms are order of T 2 and higher. In the language 

of Fourier modes, 

K dd q 2 2βH0 =
2 (2π)d 

q |~π (q)| , 

K ddq1 d
dq2 d

dq3 U1 = − 
2 (2π)3d 

πα(q1) πα(q2) πβ(q3) πβ(−q1 − q2 − q3) (q1 · q3) 

− ρ 

2 (2

d

π

dq 
)d 

|~π (q)| 2 . 
(VII.11) 

For the non-interacting (quadratic) theory, the correlation functions of the Goldstone 

modes are 
δα,β(2π)dδd(q + q ′) 〈πα(q)πβ(q′)〉0 = 

Kq2 
. (VII.12) 

The resulting fluctuations in real space behave as 

� 
π(x)2

� 
= 

ddq � 
~π (q) 2

� 
=

(n − 1) 1/a ddq 1 
=

(n − 1) Kd 

� 
a2−d − L2−d 

� 

.
0 (2π)d 

| | 
0 K 1/L (2π)d q2 K (d − 2) 

(VII.13) 

For d > 2 the fluctuations are indeed proportional to T . However, for d ≤ 2 they diverge 

as L → ∞. This is a consequence of the Mermin–Wagner theorem on the absence of long 

range order in d ≤ 2. Polyakov (1975) argued that this implies a critical temperature 

Tc ∼ O(d − 2) for such systems, and that an RG expansion in powers of T may provide a 

systematic way to explore critical behavior close to two dimensions. 

To construct a perturbative RG, consider a spherical Brillouin zone of radius Λ, and 

divide the modes as ~π (q) = ~π <(q) + ~π >(q). The modes ~π < involve momenta 0 < |q| < 

Λ/b, while we shall integrate over the short wavelength fluctuations ~π > with momenta in 

the shell Λ/b < q < Λ. To order of T , the coarse–grained Hamiltonian is given by | |
� � � � � � ��>< < < >βH̃ ~π = V δfb 

0 + βH0 ~π + U1 ~π + ~π
0 

+ O(T 2), (VII.14) 

where 〈 〉> indicates averaging over ~π > . The term proportional to ρ in eq.(VII.11) results 0 

in two contributions, one is a constant addition to free energy (from (π>)2 ), and the 

other is simply ρ(π<)2 . (The cross terms proportional to ~π < ~π > vanish by symmetry.) · 
The quartic part of U1 generates 16 terms. Nontrivial contributions arise from products 

of two ~π < and two ~π > . There are three types of such contributions; the first has the form 

0〈U a 
1〉 

> 
= 2 × −

2 

K ddq1 

(2

dd

π

q

)3
2 

d 

ddq3
(q1 · q3) 

(VII.15) 

πα
>(q1)πα

>(q2) π<(q3)π
<(−q1 − q2 − q3).0 β β 
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The integral over the shell momentum q1 is odd and this contribution is zero. (Two similar 

vanishing terms arise from contractions with different indices α and β.) The next term is 

a renormalization of ρ, arising from 

b 
�> K dd q1 d

d q2 d
d q3 U 

0 
= − 

2 (2π)3d 
(q1 · q3)1 

πα
>(q1)πβ

>(q3) πα
<(q2)πβ

<(−q1 − q2 − q3) 
0 

K Λ/b dd q 2
Λ ddk k2 (VII.16) 

=
2 0 (2π)d

|~π <(q)| × 
Λ/b (2π)d Kk2 

= 
ρ 

2 

� 

0

Λ/b 

(2

dd

π

q 
)d
|~π <(q)| 2 × 

� 
1 − b−d

� 
. 

(Note that in general ρ = N/V = 
0

Λ 
ddq/(2π)d.) Finally, a renormalization of K is 

obtained from 

K ddq1 d
dq2 d

dq3c > 〈U 1〉0 = − 
2 (2π)3d 

(q1 · q3) 

πα
>(q2)π

>(−q1 − q2 − q3) πα
<(q1)π

<(q3) (VII.17) β β 
0 

K Λ/b ddq 2 2 Id(b) 
=

2 0 (2π)d 
q |~π <(q)| × 

K
, 

where 
Λ ddk KdΛ

d−2 
� � 

1
= 

1 − b2−d

. (VII.18) Id(b) ≡ 
Λ/b (2π)d k2 (d − 2) 

The coarse–grained Hamiltonian in eq.(VII.14) now equals 

βH̃ ~π < =V δfb 
0 + V δfb 

1 + 
K 

2 
1 + 

Id

K 

(b) 
� 

0

Λ/b 

(2

d

π

dq 
)d 

q 2 |~π <(q)| 2 

+ 
K 

2 

ddq1 

(2

dd

π

q

)3
2 

d 

ddq3
πα

<(q1) πα
<(q2) πβ

<(q3) πβ
<(−q1 − q2 − q3) (q1 · q3) 

− ρ 

2 

� 

0

Λ/b 

(2

d

π

dq 
)d
|~π <(q)| 2 × 

� 
1 − 

� 
1 − b−d

�� 
+ O(T 2). 

(VII.19) 

The most important consequence of coarse graining is the change of the elastic coefficient 

K to 

K̃ = K 1 + 
Id(b) 

. (VII.20) 
K 
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After rescaling, x ′ = x/b, and renormalizing, ~π ′(x) = ~π <(x)/ζ, we obtain the renor­

malized Hamiltonian in real space as 

˜
−βH ′ = − V δfb 

0 − V δfb 
1 − Kbd

2 

−2ζ2 

dd x ′(∇ ′π′)2 

(VII.21) 

− Kbd

2 

−2ζ4 

dd x ′ (~π ′(x ′)∇~π ′(x ′))2 + 
ρζ

2 

2 

dd x ′ π′(x ′)2 + O(T 2). 

The easiest method for obtaining the rescaling factor ζ, is to take advantage of the ro­

tational symmetry of spins. After averaging over the short wavelength modes, the spin 

is 
� �> �� 

� ��>


~̃s = π1 
< + π1 

> , , 1 − (~π < + ~π >)2

0 

· · · 
0 

= π< (~π <)2 
� 

(~π >)2
�> 

+1 , · · · , 1 − 
2 

− 
2 0 

· · · 
(VII.22) 

= 1 − (~π

2 

>)2

0 

+ O(T 2) 
� 
π< · · · , 1 − (~π <)2 

� 
.1 ,

We thus identify 

ζ = 1 − (~π

2 

>)2

0 

+ O(T 2) = 1 − (n −
2

1) Id

K 

(b)
+ O(T 2), (VII.23) 

as the length of the coarse-grained spin. The renormalized coupling constant in eq.(VII.21) 

is now obtained from 

K ′ = bd−2ζ2K̃
� �2 � � 

= bd−2 1 − n 

2

−
K 

1 
Id(b) K 1 + 

K 

1 
Id(b) (VII.24) 

= bd−2K 1 − n − 2 
Id(b) + O 1 

. 
K K2 

For infinitesimal rescaling, b = (1 + δℓ), the shell integral results in 

Id(b) = KdΛ
d−2δℓ. (VII.25) 

The differential recursion relation corresponding to eq.(VII.24) is thus 

dK 
= (d − 2)K − (n − 2)KdΛ

d−2 . (VII.26) 
dℓ 
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Alternatively, the scaling of temperature T = K−1, is 

dT 1 dK 

dℓ 
= −

K2 dℓ 
= −(d − 2)T + (n − 2)KdΛ

d−2T 2 . (VII.27) 

It may appear that we should also keep track of the evolution of the coefficients of the 

two terms in U1 under RG. In fact, spherical symmetry ensures that the coefficient of the 

quartic term is precisely the same as K at all orders. The apparent difference between the 

two is of order of O(T 2), and will vanish when all terms at this order are included. The 

coefficient of the second order term in U1 merely tracks the density of points and also has 

trivial renormalization. 

The behavior of temperature under RG changes drastically at d = 2. For d < 2, the 

linear flow is away from zero, indicating that the ordered phase is unstable and there is no 

broken symmetry. For d > 2, small T flows back to zero, indicating that the ordered phase 

is stable. The flows for d = 2 are controlled by the second ordered term which changes 

sign at n = 2. For n > 2 the flow is towards high temperatures, indicating that Heisenberg 

and higher spin models are disordered. The situation for n = 2 is ambiguous, and it can 

in fact be shown that dT/dℓ is zero to all orders. This special case will be discussed in 

more detail in the next section. For d > 2 and n > 2, there is a phase transition at the 

fixed point, 

T ∗ =
(n − 2)

ǫ

KdΛd−2 
=

(n 

2

−
πǫ 

2) 
+ O(ǫ2), (VII.28) 

where ǫ = d − 2 is used as a small parameter. The recursion relation at order of ǫ is 

dT 
= −ǫT +

(n − 2) 
T 2 . (VII.29) 

dℓ 2π 

Stability of the fixed point is determined by the linearized recursion relation 

dδT � (n − 2) 

dℓ 
� 
T∗ 

= −ǫ + 
π

T ∗ δT = [−ǫ + 2ǫ] δT = ǫδT, = ⇒ yt = ǫ . (VII.30) 

The thermal eigenvalue, and the resulting exponents ν = 1/ǫ, and α = 2−(2+ǫ)/ǫ ≈ −2/ǫ, 

are independent of n at this order. 

The magnetic eigenvalue can be obtained by adding a term −~h ddx ~s (x), to the · 
Hamiltonian. Under the action of RG, h′ = bdζh ≡ byh h, with 

byh = bd 1 − n 

2

−
K 

1 
Id(b) . (VII.31) 
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For an infinitesimal rescaling


1 + yhδℓ = (1 + dδℓ) 1 − n −
2

1 
T ∗KdΛ

d−2δℓ , (VII.32) 

leading to 

yh = d −
2(

n

n 

−
−

1

2) 
ǫ = 1 + 

2(

n

n 

−
−

3

2) 
ǫ + O(ǫ2), (VII.33) 

which does depend on n. Using exponent identities, we find 

ǫ 
η = 2 + d − 2yh = . (VII.34) 

n − 2 

The exponent η is zero at the lowest order in a 4− d expansion, but appears at first order 

in the vicinity of two dimensions. The actual values of the exponents calculated at this 

order are not very satisfactory. 
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