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VI.H Critical behavior of the two-dimensional Ising model 

To understand the singularity in the free energy of the two dimensional Ising model 

in eq.(VI.73), we start with the simpler expression obtained by the unrestricted sum over 

phantom loops in sec.VI.F. Specializing eq.(VI.53) to d = 2, 

fG = ln 
( 
2 cosh2 K 

) 
− 

2

1 dq

(2
x

π

dq

)2 
y 

ln [1− 2t (cos qx + cos qy)] . (VI.75) 

Apart from the argument of the logarithm, this expression is similar to the exact result. 

Is it possible that such similar functional forms lead to distinct singular behaviors? The 

singularity results from the vanishing of the argument of the logarithm at tc = 1/4. In the 

vicinity of this point we make an expansion as in eq.(VI.50), 

AG(t,q) = (1− 4t) + tq2 +O(q 4) ≈ tc q 2 + 4	
δt 

, (VI.76) 
tc 

where δt = tc − t. The singular part of eq.(VI.75) can be obtained by focusing of the 

behavior of the integrand as q 0, and replacing the square Brillouin zone for the range → 

of the integral with a circle of radius Λ ≈ 2π, 

fsing. =
1 
∫ Λ 2πqdq 

ln q 2 + 4 
δt − 

2 0 4π2 tc 
(VI.77) 

1 
[( 

δt 
) ( 

q2 + 4δt/tc 

)]Λ 

= − 
8π

q 2 + 4 
tc 

ln 
e 0 

. 

Only the expression evaluated at q = 0 is singular, and 

1 δt δt 
fsing. = ln .	 (VI.78) 

2π tc tc 

The resulting heat capacity, CG ∝ ∂2fG/∂2t, diverges as 1/δt. Since eq.(VI.75) is not valid 

for t > tc, we cannot obtain the behavior of heat capacity on the low temperature side. 

For the exact result of eq.(VI.73), the argument of the logarithm is 

2 2A ∗ (t,q) = 
( 
1 + t

)2 − 2t 
( 
1− t

) 
(cos qx + cos qy) . (VI.79) 

The minimum value of this expression, for q = 0, is 

2	 2 2 2A ∗ (t, 0) = 
( 
1 + tc 

)2 − 4tc 

( 
1− t2 c 

) 
= 
( 
1− tc 

)2 
+ 4tc − 4tc 

( 
1− t2 c 

) 
= 
( 
1− tc − 2tc 

)2 
. 

(VI.80) 
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Since this expression (and hence the argument of the logarithm) is always non–negative, 

the integral exists for all values of t. As required, unlike eq.(VI.75), the exact result is 

valid at all temperatures. There is a singularity when the argument vanishes for 

2tc + 2tc − 1 = 0, = ⇒ tc = −1±
√

2.	 (VI.81) 

The positive solution describes a ferromagnet, and leads to a value of Kc = ln 
(√

2 + 1 /2, 

in agreement with the duality arguments of sec.VI.D. Setting δt = t − tc, and expanding 

eq.(VI.79) in the vicinity of q 0 gives → 

A ∗ (t,q) ≈ [(−
[ 
2tc − 2)δt]

2 
+ t
] 
c(1− t2 c)q 

2 + · · · 
( )2 

≈2tc 
2 q 2 + 4	

δt 
. 

(VI.82) 

tc 

The important difference from eq.(VI.76) is that (δt/tc) appears at quadratic order. Fol­

lowing the steps in eqs.(VI.77) and (VI.78), the singular part of the free energy is 

lnZ 
∣

∣

∣ 
=

1 
∫ Λ 2πqdq 

ln q 2 + 4 

( 
δt 
)2 

N ∣ sing. 2 0 4π2 tc 

[( ) ]Λ 

=
1 

q 2 + 4 

( 
δt 
)2 

ln 

( 
q2 + 4(δt/tc)

2
) 

(VI.83) 
8π tc	 e 

0 
( )2 ∣ ∣ 

1 δt ∣ δt ∣ 
= ln + analytic terms.− 

π tc tc 

The heat capacity is obtained by taking two derivatives and diverges as C(δt)sing. = 

A± ln δt . The logarithmic singularity corresponds to the limit α = 0; the peak is sym­| |
metric, characterized by the amplitude ratio A+/A− = 1. 

The exact partition function of the Ising model on the square lattice was originally 

calculated by Lars Onsager in 1944 (Phys. Rev. 65, page 117). Onsager used a 2L × 2L 

transfer matrix to study a lattice of width L. He then identified various symmetries of this 

matrix which allowed him to diagonalize it and obtain the largest eigenvalue as a function 

of L. For any finite L, this eigenvalue is non-degenerate as required by Frobenius’s theorem. 

In the limit L →∞, the top two eigenvalues become degenerate at Kc. The result in this 

limit naturally coincides with eq.(VI.74). Onsager’s paper is quite long and complicated, 

and regarded as a tour de force of mathematical physics. A somewhat streamlined version 

of this solution was developed by B. Kaufman (Phys. Rev. 76, 1232 (1949)) and is 
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more or less reproduced in chapter 15 of Huang. This exact solution, for the first time, 

demonstrated that critical behavior at a phase transition can in fact be quite different from 

predictions of Landau (mean–field) theory. It took almost three decades to reconcile the 

two results by the renormalization group. 

The graphical method presented in this section was originally developed by Kac and 

Ward (Phys. Rev. 88, 1332 (1952)). The main ingredient of the derivation is the result 

that the correct accounting of the paths can be achieved by including a factor of (-1) 

for each intersection. (This conjecture by Feynman is proved in S. Sherman, J. Math. 

Phys. 1, 202 (1960).) The change of sign is reminiscent of the exchange factor between 

fermions. Indeed, Schultz, Mattis, and Lieb (Rev. Mod. Phys. 36, 856 (1964)) describe 

how the Onsager transfer matrix can be regarded as a Hamiltonian for the evolution of non­

interacting fermions in one dimension. The Pauli exclusion principle prevents intersections 

of the world-lines of these fermions in two dimensional space-time. 

In addition to the partition function, the correlation functions 〈σiσj〉 can also be 

calculated by summing over paths (see Itzykson and Drouffe, Statistical field theory: 1). 

Since the combination q2 + 4(δt/tc)
2 in eq.(VI.82) describes the behavior of these random 

walks, we expect a correlation length ξ ∼ |tc/δt|, i.e. diverging with an exponent ν = 1 on 

both sides of the phase transition with an amplitude ratio of unity. The exponents α and 

ν are related by the hyperscaling identity α = 2 − 2ν. The critical correlations at tc are 

more subtle and decay as 〈σiσj〉c ∼ 1/|i − j|η, with η = 1/4. Integrating the correlation 

functions yields the susceptibility, which diverges as χ± ≃ C±|δt|−γ , with γ = 7/4, and 

C+/C− = 1. A rather simple expression for the zero field magnetization, 

m = 
( 
1− sinh−4(2K) 

)1/8 
, (VI.84) 

was presented without proof by Onsager. A rather difficult derivation of this result was 

finally given by C.N. Yang (Phys. Rev. 85, 808 (1952)). The exponent β = 1/8 satisfies 

the required exponent identities. 
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