
∑ ∑ 

VI.F Summing over Phantom Loops 

The high temperature series can be approximately summed so as to reproduce the 

Gaussian model. This correspondence provides a better understanding of why Gaussian 

behavior is applicable in high dimensions, and also prepares the way for the exact summa­

tion of the series in two dimensions in the next section. The high temperature series for 

the partition function of the Ising model on a d–dimensional hypercubic lattice is obtained 

from 

Z = e 
K 

〈ij〉 
σiσj 

= 2N coshdN K × S, (VI.35) 
{σi} 

where S is the sum over all allowed graphs on the lattice, each weighted by t ≡ tanhK 

raised to the power of the number of bonds in the graph. The allowed graphs have an 

even number of bonds per site. The simplest graphs have the topology of a single closed 

loop. There are also graphs composed of disconnected closed loops. Keeping in mind the 

cumulant expansion, we can set 

Ξ = sum over contribution of all graphs with one loop, (VI.36) 

and introduce another sum, 

S ′ = exp (Ξ) =1 + Ξ + 
1

(Ξ)
2 
+

1
(Ξ)

3 
+ 

2 6 
· · · 

(VI.37) 
=1 + (1 loop graphs) + (2 loop graphs) + (3 loop graphs) + .· · · 

Despite their similarities, the sums S and S ′ are not identical: There are ambiguities 

associated with loops that intersect at a single site, which will be discussed more fully in 

the next section. More importantly, S ′ includes additional graphs where a particular bond 

contributes more than once, while in the original sum S, each lattice bond contributes a 

factor of 1 or t. This arises because after raising Ξ to a power ℓ, a particular bond may 

contribute up to ℓ times for a factor of tℓ . In the spirit of the approximation that includes 

multiple appearances of a bond, we shall allow additional closed paths in Ξ, in which a 

particular bond is traversed more than once in completing the loop. Qualitatively, S is the 

partition function of a gas of self–avoiding polymer loops with a monomer fugacity of t. 

The self–avoiding constraint is left out in the partition function S ′ , which thus corresponds 

to a gas of phantom polymer loops, which may pass through each other with impunity. 
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Loops of various shapes can be constructed from closed random walks on the lattice, and 

the corresponding free energy of phantom loops is 

ln S ′ = all closed random walks on the lattice × tlength of walk 

∑ tℓ (VI.38) 
=N (number of closed walks of ℓ steps starting and ending at 0). 

ℓ 
ℓ 

Note that extensivity is guaranteed since (up to boundary effects) the same loop can be 

started from any point on the lattice. The overall factor of 1/ℓ accounts for the ℓ possible 

starting points for a loop of length ℓ. 

A transfer matrix method can be used to count all possible (phantom) random walks 

on the lattice. Let us introduce a set of N × N matrices, 

〈i|W (ℓ)|j〉 ≡ number of walks from j to i in ℓ steps, (VI.39) 

in terms of which eq.(VI.38) becomes 

lnS ′ 1 ∑ tℓ 

N 
=

2 ℓ 
〈0|W (ℓ)|0〉. (VI.40) 

ℓ 

The additional factor of 2 arises since the same loop can be traversed by two random walks 

moving in opposite directions. Similarly, the spin–spin correlation function 

1 〈σ(0)σ(r)〉 = σ(0)σ(r) (1 + tσiσj), (VI.41) 
Z 

{σi} 〈ij〉 

is related to the sum over all paths connecting the points 0 and r on the lattice. In 

addition to the simple paths that directly connect the two points, there are disconnected 

graphs that contain additional closed loops. In the same approximation of allowing all 

intersections between paths, the partition function S ′ can be factored out of the numerator 

and denominator of eq.(VI.41), and 

〈σ(0)σ(r〉 ≈ tℓ 〈r|W (ℓ)|0〉 . (VI.42) 
ℓ 

The counting of phantom paths on a lattice is easily accomplished by taking advantage 

of their Markovian property. This is the property that each step of a random walk proceeds 

from its last location and is independent of its previous steps. Hence, the number of walks 

can be calculated recursively. First, note that the any walk from 0 to r in ℓ steps can be 
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∑ 

′ accomplished as a walk from 0 to some other point r in ℓ − 1 steps, followed by a single 
′ step from r to r. Summing over all possible locations of the intermediate point leads to 

′ ′ 〈r|W (ℓ)|0〉 = 
r 

〈r|W (1)|r 〉 × 〈r |W (ℓ − 1)|0〉 
(VI.43) ′ 

= 〈r|TW (ℓ − 1)|0〉 , 

where the sum corresponds to the product of two matrices, and we have defined T ≡ W (1). 

The recursion process can be continued and 

W (ℓ) = TW (ℓ − 1) = T 2W (ℓ − 2)2 = = T ℓ . (VI.44) · · · 

Thus all lattice random walks are generated by the transfer matrix T , whose elements are 

{ ′ 
′ 1 if r and r are nearest neighbors 〈r|T |r 〉 = 

0 otherwise 
. (VI.45) 

(It is also called the adjacency, or connectivity matrix.) For example in d = 2, 

′ ′ x ′ ′ ′ ′ ′〈x, y|T | , y 〉 = δy,y (δx,x +1 + δx,x −1) + δx,x (δy,y +1 + δy,y ′−1) , (VI.46) 

and successive actions of T on a walker starting at the origin x, y >= δx,0δy,0, generate |
the patterns 

0 0 1 0 0 
0 0 0 0 1 0 0 2 0 2 0 
0 
0 

1 
0 

0 
0 

T 

−→ 1 
0 

0 
1 

1 
0 

T 

−→ 1 
0 

0 
2 

4 
0 

0 
2 

1 
0 

T 

−→ · · · . 

0 0 1 0 0 

The value at each site is the number of walks ending at that point after ℓ steps. 

Various properties of random walks can be deduced from diagonalizing the matrix 

T . Due to the translational symmetry of the lattice, this is achieved in the Fourier basis 

〈r|q〉 = eiq·r/
√

N . For example in d = 2, starting from eq(VI.46), it can be checked that 

′ ′ ′ ′ 〈x, y|T |qx, qy〉 = 〈x, y|T |x , y 〉 〈x , y |qx, qy〉
′ ′ x ,y 
[ ( ) ( )] 

=
1 

eiqy y eiqx(x+1) + eiqx (x−1) + eiqx x eiqy (y+1) + eiqy (y−1) √
N 

= √1 

N
e i(qxx+qy y) [2 cos qx + 2 cos qy] = T (qx, qy) 〈x, y|qx, qy〉 . 

(VI.47) 
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〈 〉 ∣ ∣ 
∣ ∣ 

∑ 

∫ ∫ 

∑ 

The generalized eigenvalue for a d–dimensional hypercubic lattice is


d 

T (q) = 2 cos qα . (VI.48) 
α=1 

The correlation function in eq.(VI.42) is now evaluated as 

∞ ∞ 

〈σ(r)σ(0)〉 ≈ tℓ 〈r|W (ℓ)|0〉 = 
〈 
r|(tT )ℓ |0 

〉 

ℓ ℓ 

∣ 1 ∣ 1 
= r 0 = (VI.49) 

∣ 1 − tT ∣ 
〈r|q〉

1 − tT (q)
〈q|0〉 

q 

dd q eiq·r 1 dd q eiq·r


=N = ∑ .

(2π)d N 1 − 2t 

∑d
α=1 cos qα (2π)d 1 − 2t α cos qα 

For t → 0, the shortest path costs least energy and 〈σ(0)σ(r)〉 ∼ t|r|. As t increases, larger 

paths dominate the sum because they are more numerous (i.e. entropically favored). 

Eventually, there is a singularity for 1 − tT (0) = 0, i.e. at 2d × tc = 1, when arbitrarily 

long paths become important. For t < tc, the partition function is dominated by small 

loops, and a polymer connecting two far away points is stretched by its line tension. When 

the fugacity exceeds tc, the line tension vanishes and loops of arbitrary size are generated. 

Clearly the neglect of intersections (which stabilizes the system at a finite density) is no 

longer justified in this limit. This transition is the manifestation of Ising ordering in the 

language of paths representing the high temperature series. On approaching the transition 

from the high temperature side, the sums are dominated by very long paths. Accordingly, 

the denominator of eq.(VI.49) can be expanded for small q as 

d 

1 − tT (q) = 1 − 2t cos qα ≃ (1 − 2dt) + tq2 + O(q 4) ≈ tc(ξ
−2 + q 2 + O(q 4)), (VI.50) 

α=1 

where 

ξ ≡ 
( 

1 − 2dt 
)−1/2 

. (VI.51) 
tc 

∫ 
dd 

qThe resulting correlation functions, 〈σ(0)σ(r)〉 ∝ 
(2π)d e

iq·r/(q2 + ξ−2), are identical to 

those obtained from the Gaussian model, and 

 
1 

 
 for r < ξ (η = 0) 
 d−2r〈σ(0)σ(r)〉 ∝ 
 e

. (VI.52) −r/ξ 
 
 for r > ξ 

r(d−1)/2 
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( ) 
∑ 

The correlation length in eq.(VI.51) diverges as ξ ∼ (tc − t)−1/2, i.e. with the Gaussian 

exponent of ν = 1/2. 

We can also calculate the free energy in eq.(VI.40) as 

∞ 〈 ∣ ∣ 〉 
ln S ′ 1 ∑ tℓ 1 ∣ tℓT ℓ 

∣ 

N 
=

2 ℓ 
〈0|W (ℓ)|0〉 =

2 
0 
∣ ℓ ∣

∣ 0 
ℓ 

1 N dd q 
= −

2 
〈0| ln(1 − tT )|0〉 = −

2 (2π)d 
〈0|q〉 ln (1 − tT (q)) 〈q|0〉 (VI.53) 

1 
∫ 

dd q 
d 

= −
2 (2π)d 

ln 1 − 2t cos qα . 
α=1 

In the vicinity of the critical point at tc = 1/(2d), the argument of the logarithm is 

proportional to (q2 +ξ−2) from eq.(VI.50). This is precisely as in the Gaussian model, and 

as discussed earlier the singular part of the free energy scales as 

fsing ∝ ξ−d ∝ (tc − t)d/2 . (VI.54) 

The singular part of the heat capacity, obtained after taking two derivatives, is governed 

by the exponent α = 2 − d/2. Note that in evaluating the sums appearing in eqs.(VI.49) 

and (VI.53), the lower limit for ℓ is not treated very carefully. The series in eq.(VI.49) is 

assumed to start from ℓ = 0, and that of eq.(VI.53) from ℓ = 1. In fact the first few terms 

of both series may be zero because the number of steps is not sufficient to reach 0 from r, 

or to from a closed loop. This is not a serious omission, in that the singular behavior of a 

series is not effected by its first few terms. Treating the first few terms properly can only 

add analytic corrections to the singular forms calculated in eqs.(VI.49) and (VI.53). 

The equivalence of these results to the Gaussian model is a manifestation of field– 

particle duality. In a field theoretical description, (imaginary) time appears as an addi­

tional dimension, and the two point correlations describe the probability of propagating a 

particle from one point in space–time to another. In a wave description, this probability 

is calculated by evolving the wave function using the Schrödinger equation. Alternatively, 

the probability can be calculated as the sum over all (Feynman) paths connecting the two 

points, each path weighted with the correct action. The second sum is similar to the above 

calculation of 〈σ(r)σ(0)〉. 
This approach provides an interesting geometrical interpretation of the phase tran­

sition. The establishment of long range order implies that all parts of the system have 

selected the same state. This information is carried by the bonds connecting nearest 

103




neighbors, and can be passed from the origin to a point r, through all paths connecting 

these two points. The fugacity t is a measure of the reliability of information transfer 

between neighboring sites. Along a one dimensional chain, unless t = 1, the transferred 

information decays at large distances and it is impossible to establish long range order. 

In higher dimensions there are many more paths, and by accumulating the information 

from all paths it is possible to establish order at tc < 1. Since the number of paths of 

length ℓ grows as (2d)ℓ while their information content decays as tℓ, the transition occurs 

at tc = 1/(2d). (A better approximation is obtained by including some of the constraints 

by noting that the random walk cannot back track. In this case the number of walks grows 

as (2d − 1)ℓ.) The total information from paths of length ℓ is weighted by (2dt)ℓ, and 

decays exponentially for t < tc. The characteristic path length, ℓ = −1/ ln(2dt), diverges 

as (tc − t)−1 on approaching the transition. For paths of size ℓ ≪ ℓ there is very good 

information transfer. Such paths execute random walks on the lattice and cover a distance 
1/2 

ξ ≈ ℓ . The divergence of ν with an exponent of 1/2 is thus a consequence of the random 

walk nature of the paths. 

Why does the classical picture fail for d ≤ 4? Let us focus on the dominant paths close 

to the phase transition. Is it justified to ignore the intersections of such paths? Random 

walks can be regarded as geometrical entities of fractal (Hausdorf) dimension df = 2. This 

follows from the general definition of dimension relating the mass and extent of an object 

by M ∝ Rdf , and the observation that the size of a random walk (R ∝ ξ) is the square 

root of its length (M ∝ ℓ). Two geometrical entities of dimensions d1 and d2 will generally 

intersect in d–dimensional space if d1 + d2 ≥ d. Thus our random walkers are unlikely to 

intersect in d ≥ du = 2+2 = 4, and the above (Gaussian) results obtained by neglecting the 

intersections are asymptotically valid. Below the upper critical dimension of 4, random 

walks have frequent encounters and their intersections must be treated correctly. The 

diagrams obtained in the perturbative calculation of the propagator with um4 correspond 

precisely to taking into account the intersections of paths. (Each factor of u corresponds 

to one intersection.) It is now clear that the constraint of self-avoidance will swell the 

paths beyond their random walk size leading to an increase in the exponent ν. Below 

the transition the length of paths grows without bound and the self–avoiding constraint is 

necessary to ensure the stability of the system. 

The loop expansion is easily generalized to n-component spins. The only difference 

is that each closed loop now contributes a factor of n. In the phantom limit, where 

intersections are ignored, the free energy (eq.(VI.53)) is simply multiplied by n, while the 
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correlation function is left unchanged (precisely as in the Gaussian model). Corrections due 

to intersections, which modify critical behavior in d < 4, now depend on n. For example, 

in correcting the two point correlation function, we have to subtract contributions from 

the self-intersection of the random walk, as well as from contacts with loops (which have 

a fugacity of n). The correspondence with the perturbative series of the propagator with 

a nonlinearity u(m� �m)2, is again apparent. · 
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