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8.334: Statistical Mechanics II Spring 2014 Test 3 

Review Problems & Solutions 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The intent of this sheet is as a reminder of important formulas and definitions, and not as 

a compact transcription of the answers provided here. The test will be composed entirely 

from a subset of the following problems as well as those in problem sets 5 and 6. 

Thus if you are familiar and comfortable with these problems, there will be no surprises! 

******** 

1. Continuous spins: In the standard O(n) model, n component unit vectors are placed 

on the sites of a lattice. The nearest neighbor spins are then connected by a bond JSsi sj.· S
In fact, if we are only interested in universal properties, any generalized interaction f(Ssi ·Ssj) 
leads to the same critical behavior. By analogy with the Ising model, a suitable choice is 

exp [f(Ssi sj)] 1 + (nt)Ssi · S· S = sj , 

resulting in the so called loop model. 

(a) Construct a high temperature expansion of the loop model (for the partition function 

Z) in the parameter t, on a two-dimensional hexagonal (honeycomb) lattice. 

• The partition function for the loop model has the form 

I

Z = {Dsi} [1 + (nt)si · sj ] , 
(ij) 

that we can expand in powers of the parameter t. If the total number of nearest neighbor 

bonds on the lattice is NB, the above product generates 2
NB possible terms. Each term 

may be represented by a graph on the lattice, in which a bond joining spins i and j is 

included if the factor si · sj appears in the term considered. Moreover, each included bond 

carries a factor of nt. As in the Ising model, the integral over the variables {si} leaves only 

graphs with an even number of bonds emanating from each site, because 

ds sα = ds sαsβsγ = · · · = 0. 

In a honeycomb lattice, as plotted below, there are only 1, 2, or 3 bonds emerging 

from each site. Thus the only contributing graphs are those with two bonds at each site, 

which, as any bond can only appear once, are closed self-avoiding loops. 
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While the honeycomb lattice has the advantage of not allowing intersections of loops at a 

site, the universal results are equally applicable to other lattices. 

We shall rescale all integrals over spin by the n-dimensional solid angle, such that 
J 
ds = 1. Since sαsα = 1, it immediately follows that 

δαβ 
ds sαsβ = , 

n 

resulting in 
1′ ′ ′ ′′ ′′ ds (sαsα)(sβsβ) = sαsα. n 

A sequence of such integrals forces the components of the spins around any loop to be the 

same, and there is a factor n when integrating over the last spin in the loop, for instance 

δαβδβγδγδδδηδηνδαν n {Dsi} (s1αs2α)(s2βs3β)(s3γs4γ)(s4δs5δ)(s5ηs6η)(s6νs1ν) = = .
6 6n n

Since each bond carrier a factor of nt, each loop finally contributes a factor n × tℓ, where 
ℓ is the number of bonds in the loop. The partition function may then be written as 

 

NℓtNbZ = n , 
self−avoiding loops 

where the sum runs over distinct disconnected or self-avoiding loops collections with a 

bond fugacity t, and Nℓ, Nb are the number of loops, and the number of bonds in the 

graph, respectively. Note that, as we are only interested in the critical behavior of the 

model, any global analytic prefactor is unimportant. 

(b) Show that the limit n → 0 describes the configurations of a single self-avoiding polymer 

on the lattice. 

• While Z = 1, at exactly n = 0, one may obtain non-trivial information by considering 

the limit n → 0. The leading term (O(n1)) when n → 0 picks out just those configurations 

with a single self-avoiding loop, i.e. Nℓ = 1. 

The correlation function can also be calculated graphically from 

I1 
Gαβ(n −m) = (snαsmβ) = {Dsi}snαsmβ [1 + (nt)si · sj ] . 

Z 
(ij) 
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After disregarding any global prefactor, and taking the limit n → 0, the only surviving 
graph consists of a single line going from n to m, and the index of all the spins along 

the line is fixed to be the same. All other possible graphs disappear in the limit n → 0. 
Therefore, we are left with a sum over self-avoiding walks that go from n to m, each 

carrying a factor tℓ, where ℓ indicates the length of the walk. If we denote by Wℓ(R) the 

number of self-avoiding walks of length ℓ whose end-to-end distance is R, we can write 

that 
ℓWℓ(R)t = lim G(R). 

n→0 
ℓ 

As in the case of phantom random walks, we expect that for small t, small paths 

dominate the behavior of the correlation function. As t increases, larger paths dominate 

the sum, and, ultimately, we will find a singularity at a particular tc, at which arbitrarily 

long paths become possible. 

Although we presented the mapping of self-avoiding walks to the n → 0 limit of 

the O(n) model for a honeycomb lattice, the critical behavior should be universal, and 

therefore independent of this lattice choice. What is more, various scaling properties of 

self-avoiding walks can be deduced from the O(n) model with n → 0. Let us, for instance, 
characterize the mean square end-to-end distance of a self-avoiding walk, defined as 

R2
�� 
=

1 
R2Wℓ(R),

Wℓ 
R 

L

where Wℓ = Wℓ(R) is the total number of self-avoiding walks of length ℓ.R 

The singular part of the correlation function decays with separation R as G ∝ 
|R|−(d−2+η), up to the correlation length ξ, which diverges as ξ ∝ (tc − t)−ν . Hence, 

R2G(R) ∝ ξd+2−(d−2+η) − t)−ν(4−η)= (tc = (tc − t)−γ−2ν . 
R 
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We noted above that G(t, R) is the generating function of Wℓ(R), in the sense that 
L L 

Wℓ(R)tℓ = G(t, R). Similarly Wℓt
ℓ is the generating function of Wℓ, and is re­ℓ ℓ 

lated to the susceptibility χ, by 

ℓWℓt = G(R) = χ ∝ (tc − t)−γ . 
ℓ R 

To obtain the singular behavior of Wℓ from its generating function, we perform a Taylor 

expansion of (tc − t)−γ , as 

  −γ   ℓ 
t Γ(1− γ) tl −γ −γWℓt = tc 1− = tc , 
tc Γ(1 + ℓ)Γ(1− γ − ℓ) tc

ℓ ℓ 

which results in 
Γ(1− γ)

Wℓ = t−ℓ−γ .cΓ(1 + ℓ)Γ(1− γ − ℓ) 

After using that Γ(p)Γ(1− p) = π/ sin pπ, considering ℓ → ∞, and the asymptotic expres­

sion of the gamma function, we obtain 

Γ(γ + ℓ) −ℓ ∝ ℓγ−1 −ℓWℓ ∝ t tc ,cΓ(1 + ℓ) 

L L 
and, similarly one can estimate R2Wℓ(R) from R2G(R), yielding R R 

ℓ2ν+γ−1t−ℓ 
cR2 ℓ2ν∝ = . 

ℓγ−1t−ℓ 
c 

Setting n = 0 in the results of the ǫ-expansion for the O(n) model, for instance, gives the 

exponent ν = 1/2 + ǫ/16 +O(ǫ2), characterizing the mean square end-to-end distance of 

a self-avoiding polymer as a function of its length ℓ, rather than ν0 = 1/2 which describes 

the scaling of phantom random walks. Because of self-avoidance, the (polymeric) walk is 

swollen, giving a larger exponent ν. The results of the first order expansion for ǫ = 1, 2, 

and 3, in d = 3, 2, and 1 are 0.56, 0.625, and 0.69, to be compared to 0.59, 3/4 (exact), 

and 1 (exact). 

******** 

2. Potts model I: Consider Potts spins si = (1, 2, · · · , q), interacting via the Hamiltonian 

−βH = K .<ij> δsi,sj 

(a) To treat this problem graphically at high temperatures, the Boltzmann weight for each 

bond is written as 
( J

exp Kδsi,sj = C(K) [1 + T (K)g(si, sj)] , 

′with g(s, s ′ ) = qδs,s − 1. Find C(K) and T (K). 
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• To determine the two unknowns C(K) and T (K), we can use the expressions


 

K e = C [1 + T (q − 1)] if si = sj 
, 

1 = C [1− T ] if  sjsi = 

from which we obtain 

eK − 1 eK + q − 1 
T (K) = , and C(K) = . 

eK + q − 1 q 

(b) Show that 

q q q 

′ g(s, s ′ ) = 0 , g(s1, s)g(s, s2) = qg(s1, s2) , and g(s, s ′ )g(s , s) = q 2(q − 1). 
s=1 s=1 s,s ′ 

• Moreover, it is easy to check that 

q 

g(s, s ′ ) = q − 1− (q − 1) = 0, 
s=1
 

q q
 
[ ]

g(s1, s)g(s, s2) = q 2δs1sδs2s − q(δs1s + δs2s) + 1 = q (qδs1s2 − 1) = qg(s1, s2), 
s=1 s=1 

q q 
[ ] 

2 2 
′ ′g(s, s ′ )g(s, s ′ ) = q 2δss ′ δss − 2qδss + 1 = q 3 − 2q + q = q 2(q − 1). 

s,s ′=1 s,s ′=1 

(c) Use the above results to calculate the free energy, and the correlation function 

(g(sm, sn)) for a one–dimensional chain. 

• The factor T (K) will be our high temperature expansion parameter. Each bond con-
L 

tributes a factor Tg(si, sj) and, since g(s, s ′ ) = 0, there can not be only one bond per s 

any site. As in the Ising case considered in lectures, each bond can only be considered 

once, and the only graphs that survive have no dangling bonds. As a result, for a one-

dimensional chain, with for instance open boundary conditions, it is impossible to draw 

any acceptable graph, and we obtain 

I 
( JN−1N KZ = C(K) [1 + T (K)g(si, sj)] = C(K)N−1 q = q e + q − 1 . 

{si} (ij) 

Ignoring the boundary effects, i.e., that there are N −1 bonds in the chain, the free energy 

per site is obtained as 
βF ( J

K− = ln e + q − 1 . 
N 
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With the same method, we can also calculate the correlation function (g(snsm)). To get a 

nonzero contribution, we have to consider a graph that directly connects these two sites. 

Assuming that n > m, this gives 

C(K)N 
I 

(g(snsm)) = g(snsm) [1 + T (K)g(si, sj)] 
Z 

{si} (ij) 

C(K)N 

= T (K)n−m g(snsm)g(sm, sm+1) · · · g(sn−1, sn)
Z 

{si}
 

C(K)N
 

T (K)n−m n−m+1(q − 1)q N−(n−m)−1 = q = Tn−m(q − 1) 
Z 

where we have used the relationships obtained in (b). 

(d) Calculate the partition function on the square lattice to order of T 4 . Also calculate 

the first term in the low–temperature expansion of this problem. 

• The first term in the high temperature series for a square lattice comes from a square of 

4 bonds. There are a total of N such squares. Therefore, 

I 
N 
[ ]

Z = C(K) [1 + T (K)g(si, sj)] = C(K)2N q 1 +NT (K)4(q − 1) + · · · . 
{si} (ij) 

Note that any closed loop involving ℓ bonds without intersections contributes T ℓqℓ(q− 1). 

On the other hand, at low temperatures, the energy is minimized by the spins all 

being in one of the q possible states. The lowest energy excitation is a single spin in a 

different state, resulting in an energy cost of K × 4 with a degeneracy factor N × (q − 1), 

resulting in 
2NK 

[ −4K 
]

Z = qe 1 +N(q − 1)e + · · · . 

(e) By comparing the first terms in low- and high–temperature series, find a duality rule 

for Potts models. Don’t worry about higher order graphs, they will work out! Assuming 

a single transition temperature, find the value of Kc(q). 

• Comparing these expansions, we find the following duality condition for the Potts model 

eK − 1−K̃e = T (K) = . 
eK + q − 1 

This duality rule maps the low temperature expansion to a high temperature series, or vice 

versa. It also maps pairs of points, K̃ ⇔ K, since we can rewrite the above relationship 

in a symmetric way 
( ˜ J( J 
e K − 1 e K − 1 = q, 
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and consequently, if there is a single singular point Kc, it must be self-dual point, 

√˜Kc = Kc, =⇒ Kc = ln ( q + 1) . 

(f) How do the higher order terms in the high–temperature series for the Potts model 

differ from those of the Ising model? What is the fundamental difference that sets apart 

the graphs for q = 2? (This is ultimately the reason why only the Ising model is solvable.) 

• As mentioned in lectures, the Potts model with q = 2 can be mapped to the Ising model 

by noticing that δss = (1 + ss ′ )/2. However, higher order terms in the high-temperature ′ 

series of the Potts model involve, in general, graphs with three or more bonds emanating 

from each site. These configurations do not correspond to a random walk, not even a 

constrained one as introduced in class for the 2d-Ising model on a square lattice. The 

quantity 

q 

g(s1, s2)g(s1, s3)g(s1, s4) = q 3δs2s3 δs2s4 − q 2(δs2s3 + δs2s4 + δs3s4 ) + 2q, 
s1=1 

is always zero when q = 2 (as can be easily checked for any possible state of the spins s2, s3 
and s4), but is in general different from zero for q > 2. This is the fundamental difference 

that ultimately sets apart the case q = 2. Note that the corresponding diagrams in the 

low temperature expansion involve adjacent regions in 3 (or more) distinct states. 

******** 

3. Potts model II: An alternative expansion is obtained by starting with 

exp [Kδ(si, sj)] = 1 + v(K)δ(si, sj), 

where v(K) = eK − 1. In this case, the sum over spins does not remove any graphs, and 

all choices of distributing bonds at random on the lattice are acceptable. 
L 

(a) Including a magnetic field h δsi,1, show that the partition function takes the form i 

I [ ( )] 
n hnc 

sZ(q,K, h) = v b
c × q − 1 + e , 

all graphs clusters c in graph 

c cwhere n and n are the numbers of bonds and sites in cluster c. This is known as the b s 

random cluster expansion. 

• Including a symmetry breaking fiela along direction 1, the partition function 

I I 
hδsi,1Z = [1 + v(K)δ(si, sj)] e , 

{si} (ij) i 
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can be expanded in powers of v(K) as follows. As usual, if there is a total number NB 

of nearest neighbor bonds on the lattice, the product over bonds generates 2NB possible 

terms. Each term may be represented by a graph on the lattice, in which a bond joining 

sites i and j is included if the factor vδ(si, sj) appears in the term considered. Each 

included bond carries a factor v(K), as well as a delta function enforcing the equality of 

the spins on the sites which it connects. In general, these bonds form clusters of different 

sizes and shapes, and within each cluster, the delta functions force the spins at each vertex 
L 

hnto be the same. The sum therefore gives a factor of (q−1)+ e
c
s for each cluster c,
{si}

is the number of point in the cluster. The partition function may then be written cwhere ns 

as
 
[

v(K)n 

c
b

(

q − 1 +
 e
 hn

s
c

)]
 
,
 

I
 
Z(q, v, h)
 =
 

all graphs clusters in graph 

cwhere n is the number of bonds in cluster c, and the sum runs over all distinct cluster
 b 

collections. Note that an isolated site is also included in this definition of a cluster. While 

the Potts model was originally defined for integer q, using this expansion, we can evaluate 

Z for all values of q. 

(b) Show that the limit q → 1 describes a percolation problem, in which bonds are randomly 

distributed on the lattice with probability p = v/(v+1). What is the percolation threshold 

on the square lattice? 

• In the problem of bond percolation, bonds are independently distributed on the lattice, 

with a probability p of being present. The weight for a given configuration of occupied 

and absent bonds bonds is therefore 
c
bn I 

W (graph) = (1− p)zN p 
.
 

1− p
clusters in graph 

The prefactor of (1− p)zN is merely the weight of the configuration with no bonds. The 

above weights clearly become identical to those appearing in the random cluster expansion 

8 

∑

( )



  

 

 

� 
� 
� 

of the Potts model for q = 1 (and h = 0). Clearly, we have to set p = v/(v + 1), and 

neglect an overall factor of (1+v)N , which is analytic in v, and does not affect any singular 

v)zN hN behavior. The partition function itself is trivial in this limit as Z(1, v, h) = (1 + e . 

On the other hand, we can obtain information on the number of clusters by considering 

the limt of q → 1 from 

∂ lnZ(q, v) � 
c= [probablility of graph] e −hns 

. 
∂q q=1 all graphs clusters in graph 

Various properties of interest to percolation can then be calculated from the above 

generating function. This mapping enables us to extract the scaling laws at the percolation 

point, which is a continuous geometrical phase transition. The analog of the critical tem­

perature is played by the percolation threshold pc, which we can calculate using duality as 
∗ pc = 1/2 (after noting that v = 1). 

An alternative way of obtaining this threshold is to find a duality rule for the percola­

tion problem itself: One can similarly think of the problem in terms of empty bonds with 

a corresponding probability q. As p plays the role of temperature, there is a mapping of 

low p to high q or vice versa, and such that q = 1−p. The self-dual point is then obtained 
∗ ∗by setting p = 1− p ∗, resulting in p = 1/2. 

(c) Show that in the limit q → 0, only a single connected cluster contributes to leading 
order. The enumeration of all such clusters is known as listing branched lattice animals. 

• The parition function Z(q, v, h) goes to zero at q = 0, but again infomration about 

geometrical lattice structure can be obtain by taking the limit q → 0 in an appropriate 
afashion. In particular, if we set v = q x, then 

Nb Nc+aNbZ(q, v = xq a, h = 0) = x q , 
all graphs 

where Nb and Nc are the total number of bonds and clusters. The leading dependence 

on q as q → 0 comes from graphs with the lowest number of Nc + aNb, and depends on 

the value of a. For 0 < a < 1, these are the spanning trees, which connect all sites of the 

lattice (hence Nc = 1) and that enclose no loops (hence Nb = N − 1). Such spanning trees 
a(N−1)have a power of x qaN−a+1, and all other graphs have higher powers of q. For a = 0 

one can add bonds to the spanning cluster (creating loops) without changing the power, 

as long as all sites remain connected in a single cluster. These have a relation to a problem 

referred to as branched lattice animals. 

******** 

4. Potts duality: Consider Potts spins, si = (1, 2, · · · , q), placed on the sites of a square 
lattice of N sites, interacting with their nearest-neighbors through a Hamiltonian 

−βH = K δsi,sj . 
<ij> 
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(a) By comparing the first terms of high and low temperature series, or by any other 

method, show that the partition function has the property 

  

eK − 12NKΞ
[ −K

] −N 
[

K 
]2N 

Z(K) = qe e = q e + q − 1 Ξ , 
eK + (q − 1)

for some function Ξ, and hence locate the critical point Kc(q). 

• The low temperature series takes the form 

2NK 
[ −4K 

] 
2NKΞ

[ −K
]

Z = qe 1 +N(q − 1)e + · · · ≡ qe e , 

while at high temperatures 

  

  2N 4 
eK + q − 1 eK − 1NZ = q 1 +N(q − 1) + · · ·

q eK + q − 1 
  

K − 1−N 
[

K 
]2N e≡ q e + q − 1 Ξ . 

eK + q − 1

Both of the above series for Ξ are in fact the same, leading to the duality condition 

eK − 1−K̃e = , 
eK + q − 1

and a critical (self-dual) point of 

√˜Kc = Kc, =⇒ Kc = ln ( q + 1) . 

(b) Starting from the duality expression for Z(K), derive a similar relation for the internal 

energy U(K) = (βH) = −∂ lnZ/∂ lnK. Use this to calculate the exact value of U at the 

critical point. 

• The duality relation for the partition function gives 
  

[ −K
] [

K 
] eK − 1 

lnZ(K) = ln q + 2NK + lnΞ e = −N ln q + 2N ln e + q − 1 + lnΞ . 
eK + q − 1

The internal energy U(K) is then obtained from 

U(K) ∂ [ −K
]

− = lnZ(K) = 2N − e −K ln Ξ ′ e 
K ∂K 

  

K Ke qe eK − 1 
= 2N + lnΞ ′ .2eK + q − 1 (eK + q − 1) eK + q − 1
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ln Ξ ′ is the derivative of lnΞ with respect to its argument, whose value is not known in 

general. However, at the critical point Kc, the arguments of lnΞ ′ from the high and low 
√ 

temperature forms of the above expression are the same. Substituting eKc = 1 + q, we 

obtain 
ln Ξ ′ 2N ln Ξ ′ q − 1c c2N − √ = √ + √ , =⇒ ln Ξ ′ = √ N, c1 + q q 1 + q q 

and, √ 
U(Kc) q − 1 q + 1 − = N 2− √ , =⇒ U(Kc) = NKc √ . 
Kc q + q q 

******** 

5. Anisotropic Random Walks: Consider the ensemble of all random walks on a square 

lattice starting at the origin (0,0). Each walk has a weight of t ℓx × tyℓy , where ℓx and ℓyx 

are the number of steps taken along the x and y directions respectively. 

(a) Calculate the total weight W (x, y), of all walks terminating at (x, y). Show that W is 

well defined only for t = (tx + ty)/2 < tc = 1/4. 

• Defining (0, 0|W (ℓ) |x, y) to be the weight of all walks of ℓ steps terminating at (x, y), 

we can follow the steps in sec.VI.F of the lecture notes. In the anisotropic case, Eq.(VI.47) 

(applied ℓ times) is trivially recast into 

′ ′ (x, y|T ℓ |qx, qy) = (x, y|T ℓ |x , y ′ ) (x , y ′ | qx, qy)
′ ′ x ,y 

ℓ
=(2tx cos qx + 2ty cos qy) (x, y| qx, qy) , 
√ 

L 
where (x, y| qx, qy) = eiqxx+iqyy/ N . Since W (x, y) = (0, 0|W (ℓ) |x, y), its Fourier ℓ 

transform is calculated as 

W (qx, qy) = (0, 0|T ℓ |x, y) (x, y| qx, qy)
ℓ x,y 

1ℓ 
= (2tx cos qx + 2ty cos qy) = . 

1− (2tx cos qx + 2ty cos qy)
ℓ 

Finally, Fourier transforming back gives 

π π −iqxx−iqyyd2q d2q e−iqxx−iqyyW (x, y) = W (qx, qy) e = .2 2 
−π (2π) −π (2π) 1− (2tx cos qx + 2ty cos qy) 

Note that the summation of the series is legitimate (for all q’s) only for 2tx + 2ty < 1, i.e. 

for t̄ = (tx + ty) /2 < tc = 1/4. 

(b) What is the shape of a curve W (x, y) = constant, for large x and y, and close to the 

transition? 
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• For x and y large, the main contributions to the above integral come from small q’s. To 

second order in qx and qy, the denominator of the integrand reads 

2 21− 2 (tx + ty) + txq + tyq .x y

√′ Then, with qi ≡ tiqi, we have 

∞ ′ −iqd2q e
′ ·v 

W (x, y) ≈ ,2 √ ′2−∞ (2π) txty 1− 2 (tx + ty) + q 

x ywhere we have extended the limits of integration to infinity, and v = √ , √ . As the 
tx ty 

denominator is rotationally invariant, the integral depends only on the magnitude of the 

vector v. In other words, W (x, y) is constant along ellipses 

2 2x y
+ = constant. 

tx ty 

(c) How does the average number of steps, (ℓ) = (ℓx + ℓy), diverge as t approaches tc? 
• The weight of all walks of length ℓ, irrespective of their end point location, is 

ℓ ℓ(0, 0|W (ℓ) |x, y) = (0, 0|T ℓ |qx = 0, qy = 0) = (2tx + 2ty) = (4t̄ ) . 
x,y 

Therefore, 

L ℓ
ℓ (4t̄ ) ∂ ℓ ∂ 1 4t̄ℓ(ℓ) = 

L = 4t̄ ln (4t̄ ) = 4t̄ ln = ,
ℓ

(4t̄ ) ∂ (4t̄ ) ∂ (4t̄ ) 1− 4t̄ 1− 4t̄
ℓ ℓ 

i.e. 
t̄ (ℓ) = , 

tc − t̄

diverges linearly close to the singular value of t̄. 

******** 

6. Anisotropic Ising Model: Consider the anisotropic Ising model on a square lattice with 

a Hamiltonian 
( J 

−βH = Kxσx,yσx+1,y + Kyσx,yσx,y+1 ; 
x,y 

i.e. with bonds of different strengths along the x and y directions. 

(a) By following the method presented in the text, calculate the free energy for this model. 

You do not have to write down every step of the derivation. Just sketch the steps that 

need to be modified due to anisotropy; and calculate the final answer for lnZ/N . 
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• The Hamiltonian 

−βH = (Kxσx,yσx+1,y + Kyσx,yσx,y+1) , 
x,y 

leads to 
N ℓx ℓyZ = (2 coshKx coshKy) t t ,x y 

where ti = tanhKi, and the sum runs over all closed graphs. By extension of the isotropic 

case, 

lnZ tℓx ty
ℓy 

xf = = ln (2 coshKx coshKy) + (0|W ∗ (ℓx, ℓy) |0) ,
N ℓx + ℓy

ℓx,ℓy 

where 
′ 

1 number of crossings (0|W ∗ (ℓx, ℓy) |0) = (−1) ,
2 

and the primed sum runs over all directed (ℓx, ℓy)-steps walks from (0, 0) to (0, 0) with 

no U-turns. As in the isotropic case, this is evaluated by taking the trace of powers 

of the 4N × 4N matrix described by Eq.(VI.66), which is block-diagonalized by Fourier 

transformation. However, unlike the isotropic case, in which each element is multiplied by 

t, here they are multiplied by tx and ty, respectively, resulting in 

1 d2q [ ∗]
f = ln (2 coshKx coshKy) + tr ln 1− T (q) ,22 (2π)

where 
[ ∗] [ ∗]

tr ln 1− T (q) = ln det 1− T (q) 
[( J ( J ( J ( J ]

2 2 2 2 = ln 1 + t 1 + t − 2tx 1− t cos qx − 2ty 1− t cos qyx y y x 

cosh 2Kx cosh 2Ky − sinh 2Kx cos qx − sinh 2Ky cos qy
= ln ,

cosh 2Kx cosh 2Ky 

resulting in 

1 d2q
f = ln 2 + ln (cosh 2Kx cosh 2Ky − sinh 2Kx cos qx − sinh 2Ky cos qy) .22 (2π)

(b) Find the critical boundary in the (Kx, Ky) plane from the singularity of the free energy. 

Show that it coincides with the condition Kx = K̃y, where K̃ indicates the standard dual 

interaction to K. 

• The argument of the logarithm is minimal at qx = qy = 0, and equal to 

cosh 2Kx cosh 2Ky − sinh 2Kx − sinh 2Ky 
(

J

)21 J

Kx −Kx= e cosh 2Ky − 1− e cosh 2Ky + 1 . 
2 
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Therefore, the critical line is given by
 

 

cosh 2Ky + 1 
e 2Kx = = cothKy. 

cosh 2Ky − 1 

Note that this condition can be rewritten as 

1 1 
sinh 2Kx = (cothKy − tanhKy) = ,

2 sinh 2Ky 

˜i.e. the critical boundary can be described as Kx = Ky, where the dual interactions, K̃

and K, are related by sinh 2K sinh 2 K̃ = 1. 

(c) Find the singular part of lnZ/N , and comment on how anisotropy affects critical 

behavior in the exponent and amplitude ratios. 

• The singular part of lnZ/N for the anisotropic case can be written as 

  
( )2 21 d2q J J qKx −Kx ifS = ln  e cosh 2Ky − 1− e cosh 2Ky + 1 + sinh 2Ki

 .22 (2π) 2 
i=x,y 

In order to rewrite this expression in a form closer to that of the singular part of the free 

energy in the isotropic case, let 

2 ′ qi = qi,sinh 2Ki 

and 
J J

Kxδt = e cosh 2Ky − 1− e −Kx cosh 2Ky + 1 

(δt goes linearly through zero as (Kx, Ky) follows a curve which intersects the critical 

boundary). Then 

d2 ′ 
J1 q ( ′2fS = J ln δt2 + q .2sinh 2Kx sinh 2Ky (2π)

Thus, upon approaching the critical boundary (sinh 2Kx sinh 2Ky = 1), the singular part 

of the anisotropic free energy coincides more and more precisely with the isotropic one, 

and the exponents and amplitude ratios are unchanged by the anisotropy. (The amplitudes 

themselves obviously depend on the locatio 

******** 
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7. Müller–Hartmann Zittartz estimate of the interfacial energy of the d = 2 Ising model 

on a square lattice: 

(a) Consider an interface on the square lattice with periodic boundary conditions in one 

direction. Ignoring islands and overhangs, the configurations can be labelled by heights 

hn for 1 ≤ n ≤ L. Show that for an ansiotropic Ising model of interactions (Kx, KY ), the 

energy of an interface along the x-direction is 

−βH = −2KyL− 2Kx |hn+1 − hn| . 
n 

• For each unsatisfied (+−) bond, the energy is increased by 2Ki from the ground state 

energy, with i = x if the unsatisfied bond is vertical, and i = y if the latter is horizontal. 

Ignoring islands and overhangs, the number of horizontal bond of the interface is L, while 
L 

the number of vertical bonds is n |hn+1 − hn|, yielding 
L 

−βH = −2KyL− 2Kx |hn+1 − hn| . 
n=1 

(b) Write down a column–to–column transfer matrix (h|T |h ′ ), and diagonalize it. 
• We can define 

(h|T |h ′ ) ≡ exp (−2Ky − 2Kx |h ′ − h|) , 

or, in matrix form, 

2

  −2(H −1)Kx−2Kx −4Kx −HKx −HKx· · · −2Kx1 e
 e
 e
 e
 e
 · · · e

2−2(H 

· · · 
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2−2(H 

eT
 = e
 −2Ky −1)Kx +1)Kx e
−2Kx −2Kx1 −HKx −4Kx· · · e

 e
 e
 · · · e
 
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∑



 

  

 

  

 

 

 

 

where H is the vertical size of the lattice. In theH → ∞ limit, T is easily diagonalized since 

each line can be obtained from the previous line by a single column shift. The eigenvectors 

of such matrices are composed by the complex roots of unity (this is equivalent to the 

statement that a translationally invariant system is diagonal in Fourier modes). To the 

eigenvector 
( )

i 2π i 2π i 2π i 2π ·2 ·3 ·(H+1)k k ke k , e , e , · · · , e , 

is associated the eigenvalue 

H+1 
−2Ky ·(n−1)i 2π 

kλk = e T1ne . 
n=1 

Note that there are H + 1 eigenvectors, corresponding to k = 1, · · · , H + 1. 

(c) Obtain the interface free energy using the result in (b), or by any other method. 

• One way of obtaining the free energy is to evaluate the largest eigenvalue of T . Since all 

elements of T are positive, the eigenvector (1, 1, · · · , 1) has the largest eigenvalue 
  

H+1 H/2 

−2Ky −2Ky −2Kxnλ1 = e T1n = e 1 + 2 e  
n=1 n=1 
  

H/2 

−2Ky −2Kxn − 1= e 2 e  = e −2Ky cothKx, 
n=0 

in the H → ∞ limit. Then, F = −LkBT lnλ1. 

Alternatively, we can directly sum the partition function, as 

  LL
 
−2KyL −2KyL
Z = e exp −2Kx |hn+1 − hn| = e exp (−2Kx |d|) 

{hn} n=1 d
 

  L
 

( JL
−2Ky −2Kx= e 2 e d − 1 = e −2Ky cothKx , 
d≥0 

yielding 

F = −LkBT [ln (cothKx)− 2Ky] . 

(d) Find the condition between Kx and Ky for which the interfacial free energy vanishes. 

Does this correspond to the critical boundary of the original 2d Ising model? 

• The interfacial free energy vanishes for 

2KycothKx = e , 
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which coincides with the result from an earlier problem. This illustrates that long wave­

length fluctuations, such as interfaces, are responsible for destroying order at criticality. 

******** 

8. Anisotropic Landau Theory: Consider an n–component magnetization field S in m(x) 

d–dimensions. 

(a) Using the previous problems on anisotropy as a guide, generalize the standard Landau– 

Ginzburg Hamiltonian to include the effects of spacial anisotropy. 

• Requiring different coupling constants in the different spatial directions, along with 

rotational invariance in spin space, leads to the following leading terms of the Hamiltonian, 

d 
t 2 Ki ∂ Sm ∂ Sm 4

dd−βH = x S + · + uS .m (x) m (x)
2 2 ∂xi ∂xii=1 

(b) Are such anisotropies “relevant?” 

• Clearly, the apparent anisotropy can be eliminated by the rescaling 

K′ x = xi.i Ki 

In terms of the primed space variables, the Hamiltonian is isotropic. In particular, the 

universal features are identical in the anisotropic and isotropic cases, and the anisotropy 

is thus “irrelevant” (provided all Ki are non-vanishing). 

(c) In La2CuO4, the Cu atoms are arranged on the sites of a square lattice in planes, 

and the planes are then stacked together. Each Cu atom carries a “spin”, which we 

assume to be classical, and can point along any direction in space. There is a very strong 

antiferromagnetic interaction in each plane. There is also a very weak interplane interaction 

that prefers to align successive layers. Sketch the low–temperature magnetic phase, and 

indicate to what universality class the order–disorder transition belongs. 

• For classical spins, this combination of antiferromagnetic and ferromagnetic couplings is 

equivalent to a purely ferromagnetic (anisotropic) system, since we can redefine (e.g. in 

the partition function) all the spins on one of the two sublattices with an opposite sign. 

Therefore, the critical behavior belongs to the d = 3, n = 3 universality class. 

Nevertheless, there is a range of temperatures for which the in-plane correlation length 

is large compared to the lattice spacing, while the interplane correlation length is of the 

order of the lattice spacing. The behavior of the system is then well described by a d = 2, 

n = 3 theory. 

******** 

17
 

∫

[

∑

]

√



�   

9. Anisotropic nonlinear σ model: Consider unit n-component spins, Ss(x) = (s1, · · · , sn) 
L 

2with s = 1, subject to a Hamiltonian α α 

1 2 2ddβH = x (∇Ss ) + gs .12T 

For g = 0, renormalization group equations are obtained through rescaling distances by 
(n−1) a factor b = eℓ, and spins by a factor ζ = bys with ys = − T , and lead to the flow 4π 

equation 
dT (n − 2) 

= −ǫT + T 2 + O(T 3),
dℓ 2π 

where ǫ = d− 2. 

(a) Find the fixed point, and the thermal eigenvalue yT . 

• Setting dT/dℓ to zero, the fixed point is obtained as 

2πǫ 
+ O(ǫ2). ∗ T = 

n − 2 

Linearizing the recursion relation gives 

(n − 2) ∗ yT = −ǫ+ T = +ǫ+ O(ǫ2). 
π 

(b) Write the renormalization group equation for g in the vicinity of the above fixed point, 

and obtain the corresponding eigenvalue yg. 
′ ′ • Rescalings x → bx and Ss → ζSs ′ , lead to g → g = bdζ2g, and hence 

n − 1 n − 1 1∗ yg = d+ 2ys = d− T = 2 + ǫ− ǫ = 2− ǫ+ O(ǫ2). 
2π n − 2 n − 2 

(c) Sketch the phase diagram as a function of T and g, indicating the phases, and paying 

careful attention to the shape of the phase boundary as g → 0. 
• 

The term proportional to g removes full rotational symmetry and leads to a bicritical 

phase diagram as discussed in recitations. The phase for g < 0 has order along direction 

1, while g > 0 favors ordering along any one of the (n− 1) directions orthogonal to 1. The 

phase boundaries as g → 0 behave as g ∝ (δT )φ, with φ = yg/yt ≈ 2/ǫ+ O(1). 

******** 

10. Matrix models: In some situations, the order parameter is a matrix rather than 

a vector. For example, in triangular (Heisenberg) antiferromagnets each triplet of spins 

aligns at 120◦, locally defining a plane. The variations of this plane across the system are 
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continuous 
phase transitions 

disordered 
phase 

g 

T 

discontinuous 
phase transition 

1 

1 

described by a 3 × 3 rotation matrix. We can construct a nonlinear σ model to describe a 

generalization of this problem as follows. Consider the Hamiltonian 

K [ ]

βH = dd x tr ∇M(x) · ∇MT (x) ,
4 

where M is a real, N × N orthogonal matrix, and ‘tr’ denotes the trace operation. The 

condition of orthogonality is that MMT = MTM = I, where I is the N × N identity 

matrix, and MT is the transposed matrix, Mij 
T = Mji. The partition function is obtained 

by summing over all matrix functionals, as 

( J −βH[M(x)] Z = DM(x)δ M(x)MT (x)− I e . 

(a) Rewrite the Hamiltonian and the orthogonality constraint in terms of the matrix ele­

ments Mij (i, j = 1, · · · , N). Describe the ground state of the system. 

• In terms of the matrix elements, the Hamiltonian reads 

K 
βH = 

4 
dd x ∇Mij · ∇Mij , 

i,j 

and the orthogonality condition becomes
 

MikMjk = δij . 
k 
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Since ∇Mij · ∇Mij ≥ 0, any constant (spatially uniform) orthogonal matrix realizes a 

ground state. 

(b) Define the symmetric and anti-symmetric matrices 

 
1 ( J 

 + MT σT 
 σ = M = 

2 . 
(

 1 J 
 π = M −MT = −πT 

2 

Express βH and the orthogonality constraint in terms of the matrices σ and π. 

• As M = σ + π and MT = σ − π, 

[ ]K K 2 2
dd ddβH = x tr [∇ (σ + π) · ∇ (σ − π)] = x tr (∇σ) − (∇π) ,

4 4 

where we have used the (easily checked) fact that the trace of the cummutator of matrices 

∇σ and ∇π is zero. Similarly, the orthogonality condition is written as 

σ2 − π2 = I, 

where I is the unit matrix. 

(c) Consider small fluctuations about the ordered state M(x) = I. Show that σ can be 

expanded in powers of π as 
1 

σ = I − ππT + · · · . 
2 

Use the orthogonality constraint to integrate out σ, and obtain an expression for βH to 

fourth order in π. Note that there are two distinct types of fourth order terms. Do not 

include terms generated by the argument of the delta function. As shown for the nonlinear 

σ model in the text, these terms do not effect the results at lowest order. 

• Taking the square root of 
σ2 = I + π2 = I − ππT , 

results in 
1 (

π4
J 

σ = I − ππT + O ,
2 

(as can easily be checked by calculating the square of I − ππT/2). We now integrate out 

σ, to obtain 

K 1 ( ( JJ22
Z = Dπ (x) exp dd x tr (∇π) − ∇ ππT ,

4 4 

I

where Dπ (x) = Dπij (x), and π is a matrix with zeros along the diagonal, and j>i

elements below the diagonal given by πij = −πji. Note that we have not included the 
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terms generated by the argument of the delta function. Such term, which ensure that the 

measure of integration over π is symmetric, do not contribute to the renormalization of K 

at the lowest order. Note also that the fourth order terms are of two distinct types, due 

to the non-commutativity of π and ∇π. Indeed, 

[ (

ππT
J]2 [ (

π2
J]2 2∇ = ∇ = [(∇π)π + π∇π]

2 
= (∇π)π · (∇π)π + (∇π)π2 · ∇π + π (∇π) π + π (∇π)π · ∇π, 

and, since the trace is unchanged by cyclic permutations, 

[ (

ππT
J]2 

[ ]

2 2
tr ∇ = 2 tr (π∇π) + π2 (∇π) . 

(d) For an N -vector order parameter there are N − 1 Goldstone modes. Show that an 

orthogonal N × N order parameter leads to N(N − 1)/2 such modes. 

• The anti-symmetry of π imposes N (N + 1) /2 conditions on the N×N matrix elements, 

and thus there are N2 − N (N + 1) /2 = N (N − 1) /2 independent components (Gold-

stone modes) for the matrix. Alternatively, the orthogonality of M similarly imposes 

N (N + 1) /2 constraints, leading to N (N − 1) /2 degrees of freedom. [Note that in the 

analogous calculation for the O (n) model, there is one condition constraining the mag­

nitude of the spins to unity; and the remaining n − 1 angular components are Goldstone 

modes.] 

(e) Consider the quadratic piece of βH. Show that the two point correlation function in 

Fourier space is 

(2π)dδd(q + q ′ )(πij(q)πkl(q ′ )) = [δikδjl − δilδjk] . 
Kq2 

• In terms of the Fourier components πij(q), the quadratic part of the Hamiltonian in (c) 

has the form 
K ddq

βH0 = q 2|πij(q)|2 ,
2 

i<j 
(2π)d

leading to the bare expectation values 

d
(2π) δd (q + q ′ )(πij (q) πij (q ′ )) = ,0 Kq2 

and 

(πij (q) πkl (q ′ )) = 0, if the pairs (ij) and (kl) are different.0 

Furthermore, since π is anti-symmetric, 

(πij (q)πji (q ′ )) = −(πij (q) πij (q ′ ))0 ,0 
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and in particular 〈πii (q) πjj (q
′)〉 = 0. These results can be summarized by0

d
(2π) δd (q+ q′)〈πij (q) πkl (q

′)〉 = (δikδjl δ0 q2
− δil jk) .

K

We shall now construct a renormalization group by removing Fourier modes M>(q),

with q in the shell Λ/b < |q| < Λ.

(f) Calculate the coarse grained expectation value for 〈tr(σ)〉>0 at low temperatures after

removing these modes. Identify the scaling factor, M ′(x′) = M<(x)/ζ, that restores

tr(M ′) = tr(σ′) = N .

• As a result of fluctuations of short wavelength modes, trσ is reduced to

〈 > π2

tr σ〉0 =

〈

tr

(

I + +
2

· · ·
)〉>

1

0

≈ N +
2

〈

trπ2
〉>

0

> >
1 1 1 >

= N + π 2
jπji = N π = N N2 N π2
i

2

〈 〉

∑

−
2 ij

i= j0

〉

−
2

j

〈

=

− ij 0
i 0

(

N − 1
∫ Λ

∑

( )〈 〉

ddq 1 N 1
= N 1− = N 1

−
Id (b) .

2 d 2
Λ/b (2π) Kq

)

[

−
2K

]

To restore trM ′ = trσ′ = N , we rescale all components of the matrix by

N − 1
ζ = 1− Id (b) .

2K

NOTE: An orthogonal matrix M is invertible (M−1 = MT ), and therefore diagonalizable.

In diagonal form, the transposed matrix is equal to the matrix itself, and so its square is

the identity, implying that each eigenvalue is either +1 or −1. Thus, if M is chosen to be

very close to the identity, all eigenvalues are +1, and trM = N (as the trace is independent

of the coordinate basis).

˜(g) Use perturbation theory to calculate the coarse grained coupling constant K. Evaluate

only the two diagrams that directly renormalize the (∇πij)
2 term in βH, and show that

N Λ ddq 1
K̃ = K +

2

∫

.
Λ/b (2π)

d q2

• Distinguishing between the greater and lesser modes, we write the partition function as

∫

D <D > −βH<−βH>+U[π<,π>]Z = π π e 0 0 =

∫

Dπ< e−
>δf0 <

b −βH0

〈

eU
〉

,
0
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where H0 denotes the quadratic part, and 

K 
U = − dd x [(∇πij) πjk · (∇πkl)πli + πij (∇πjk) · (∇πkl) πli]

8 
i,j,k,l
 

K ddq1d
dq2d

dq3
 
= [(q1 · q3 + q2 · q3) · 3d8 (2π)i,j,k,l 

·πij (q1)πjk (q2)πkl (q3)πli (−q1 − q2 − q3)] . 

To first order in U , the following two averages contribute to the renormalization of K: 

 K ddq1d
dq2d

dq3 
 > 

(i) π> (q2)π
> (−q1 − q2 − q3) (q1 · q3) π

< (q1)π
< (q3)3d jk li ij kl 8 (2π) 0 

i,j,k,l 
  

Λ ′ Λ/b K ddq 1 ddq 
 2 π< = q ij (q) π

< 
 ,

d d ji (−q)
8 Λ/b (2π) Kq′2 0 (2π) i,j 

and 

> 
K ddq1d

dq2d
d

(ii) 
q3 

π> (−q1 − q2 − q3) (q2 · q3)π
< (q2)π

< (q3)3d ij (q2) πli 
> 

jk kl 8 (2π)j,k,l i=j,l 0 
  

Λ dd ′ Λ/b ddK q 1 q 2 = (N − 1)  q π< (q)π< (−q) .
d d jk kj 8 Λ/b (2π) Kq′2 0 (2π) j,k 

Adding up the two contributions results in an effective coupling 

ΛK̃ K K ddq 1 ˜ N 
= + N , i.e. K = K + Id (b) .d4 4 8 Λ/b (2π) Kq2 2 

(h) Using the result from part (f), show that after matrix rescaling, the RG equation for 

K ′ is given by: 
Λ ddN − 2 q 1 

K ′ bd−2 = K − .
22 Λ/b (2π)

d q

• After coarse-graining, renormalizing the fields, and rescaling, 

N − 1 N 
K ′ bd−2ζ2 ˜ bd−2 = K = 1− Id (b) K 1 + Id (b)

K 2K 

N − 2 
bd−2 = K − Id (b) +O (1/K) ,

2 
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i.e., to lowest non-trivial order,
 

Λ ddN − 2 q 1 
K ′ bd−2 = K − .

d2 Λ/b (2π) q2 

(i) Obtain the differential RG equation for T = 1/K, by considering b = 1 + δℓ. Sketch 

the flows for d < 2 and d = 2. For d = 2 + ǫ, compute Tc and the critical exponent ν. 

• Differential recursion relations are obtained for infinitesimal b = 1 + δℓ, as 

dK N − 2 
K ′ = K + δℓ = [1 + (d− 2) δℓ] K − KdΛ

d−2δℓ , 
dℓ 2 

leading to 
dK N − 2 

= (d− 2)K − KdΛ
d−2 . 

dℓ 2 

To obtain the corresponding equation for T = 1/K, we divide the above relation by −K2 , 

to get 
dT N − 2 

= (2− d)T + KdΛ
d−2T 2 . 

dℓ 2 

For d < 2, we have the two usual trivial fixed points: 0 (unstable) and ∞ (stable). The 
system is mapped unto higher temperatures by coarse-graining. The same applies for the 

case d = 2 and N > 2. 

For d > 2, both 0 and ∞ are stable, and a non-trivial unstable fixed point appears at 
a finite temperature given by dT/dℓ = 0, i.e. 

2 (d− 2) 4πǫ ( J∗ ǫ2T = = + O . 
(N − 2)KdΛd−2 N − 2 

In the vicinity of the fixed point, the flows are described by 

d dT � { [ ∗] }′ δT = 1 + δℓ δT = 1 + (2− d) + (N − 2)KdΛ
d−2T δℓ δT 

dT dℓ ∗T

= (1 + ǫδℓ) δT. 

Thus, from 
′ δT = byT δT = (1 + yT δℓ) δT, 

we get yT = ǫ, and 
1 

ν = . 
ǫ 
J 

(j) Consider a small symmetry breaking term −h ddx tr(M), added to the Hamiltonian. 

Find the renormalization of h, and identify the corresponding exponent yh. 
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• As usual, h renormalizes according to
 

h ′ = bdζh = (1 + dδℓ) 1− N − 1 
KdΛ

d−2δℓ h 
2K 

N − 1 
KdΛ

d−2 
(

= 1 + d− δℓ+ O δℓ2
J 

h. 
2K 

From h ′ = byhh = (1 + yhδℓ)h, we obtain 

N − 1 N − 1 ǫ ( J 
yh = d− KdΛ

d−2 = d− (d− 2) = 2− + O ǫ2 . 
2K∗ N − 2 N − 2 

Combining RG and symmetry arguments, it can be shown that the 3×3 matrix model 

is perturbatively equivalent to the N = 4 vector model at all orders. This would suggest 

that stacked triangular antiferromagnets provide a realization of the O(4) universality class; 

see P. Azaria, B. Delamotte, and T. Jolicoeur, J. Appl. Phys. 69, 6170 (1991). However, 

non-perturbative (topological aspects) appear to remove this equivalence as discussed in 

S.V. Isakov, T. Senthil, Y.B. Kim, Phys. Rev. B 72, 174417 (2005). 

******** 

11. The roughening transition: Consider a continuum interface model which in d = 3 is 

described by the Hamiltonian 

βH0 = − K d2 x (∇h)2 ,
2 

where h(x) is the interface height at location x. For a crystalline facet, the allowed values 

of h are multiples of the lattice spacing. In the continuum, this tendency for integer h can 

be mimicked by adding a term 

d2−βU = y0 x cos (2πh) , 

to the Hamiltonian. Treat −βU as a perturbation, and proceed to construct a renormal­

ization group as follows: 

(a) Show that 

  
1 

exp i qαh(xα) = exp  
K 

qαqβC(xα − xβ) 
α 0 α<β 

L 
for α qα = 0, and zero otherwise. (C(x) = ln |x|/2π is the Coulomb interaction in two 

dimensions.) 
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L 
• The translational invariance of the Hamiltonian constrains (exp [i α qαh (xα)]) to 

L 
vanish unless α qα = 0, as implied by the following relation 

� 

exp iδ qα exp i qαh (xα) = exp i qα [h (xα) + δ] 
α α 0 α 0 

= exp i qαh (xα) . 
α 0 

The last equality follows from the symmetry H [h (x) + δ] = H [h (x)]. Using general 

properties of Gaussian averages, we can set 

  
1 

exp i qαh (xα) = exp − qαqβ (h (xα) h (xβ))  
02 

α 0 αβ 
  
1 2 

= exp  qαqβ (h (xα)− h (xβ))  . 
4 0 

αβ 

Note that the quantity (h (xα)h (xβ)) is ambiguous because of the symmetry h(x) →0 
L 

h(x)+ δ. When α qα = 0, we can replace this quantity in the above sum with the height 
2

difference (h (xα)− h (xβ)) which is independent of this symmetry. (The ambiguity, 
0 

or symmetry, results from the kernel of the quadratic form having a zero eigenvalue, which 

means that inverting it requires care.) We can now proceed as usual, and 

  
( J ( J

iq·xα − iq·xβ −iq·xα − −iq·xβqαqβ d2q e e e e
exp i qαh (xα) = exp   

24 (2π) Kq2 
α 0 α,β 

  
d2q 1− cos (q · (xα − xβ)) 

= exp  qαqβ  
2

(2π) Kq2 
α<β 
  
1 

= exp  qαqβC (xα − xβ) ,
K 

α<β 

where 
d2q 1− cos (q · x) 1 |x|

C (x) = 2 2 
= ln , 

(2π) q 2π a 

is the Coulomb interaction in two dimensions, with a short distance cutoff a. 

(b) Prove that 
d2 � 

|h(x)− h(y)|2 = − Gk(x − y) ,
dk2 k=0 
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[ ( J] 
where Gk(x − y) = exp ik h(x) − h(y) . 

• From the definition of Gk (x − y), 

d2 2
Gk (x − y) = − [h (x)− h (y)] exp [ik (h (x) − h (y))] . 

dk2

Setting k to zero results in the identity 

2 d2 � 
[h (x)− h (y)] = − Gk (x − y) . 

dk2 k=0 

2(c) Use the results in (a) to calculate Gk(x − y) in perturbation theory to order of y0 . 
( J

2iπh + −2iπh(Hint: Set cos(2πh) = e e /2. The first order terms vanish according to the 

result in (a), while the second order contribution is identical in structure to that of the 

Coulomb gas described in this chapter.) 

• Following the hint, we write the perturbation as 
y0 [

2iπh −2iπh
]

d2 d2−U = y0 x cos (2πh) = x e + e . 
2 

The perturbation expansion for Gk (x − y) = (exp [ik (h (x) − h (y))]) ≡ (Gk (x − y)) is 

calculated as 

(Gk) = (Gk)0 − ((GkU)0 − (Gk)0 (U)0) 
1 ( )

( J2 
+ GkU

2 − 2 (GkU)0 (U)0 + 2 (Gk)0 (U) − (Gk)0 U2 + O U3 .
0 0 02 

From part (a), 

(U)0 = (GkU)0 = 0, 

and 
− k2 

2πK k2 |x − y|(Gk)0 = exp − C (x − y) = . 
K a 

Furthermore, 

2 

U2 y
d2 ′ d2 ′ )− h (x 0 ′′ = x x (exp [2iπ (h (x ′′ ))])00 2 

22 2y y (2π)
= 0 d2 x ′ d2 x ′′ (G2π (x ′ − x ′′ ))0 = 0 d2 x ′ d2 x ′′ exp − C (x ′ − x ′′ ) ,

2 2 K 

and similarly, 

exp [ik (h (x)− h (y))]U2 = 
0 

22y0 d2 ′ d2 ′′ k2 (2π) ′ ′′ )= x x exp − C (x − y)− C (x − x 
2 K K 

2πk 2πk 
+ [C (x − x ′ ) + C (y − x ′′ )]− [C (x − x ′′ ) + C (y − x ′ )] . 

K K 
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Thus, the second order part of Gk (x − y) is 

2
y0 k2 
d2 ′ d2 ′′ 4π2 

′ ′′ )
exp − C (x − y) x x exp − C (x − x · 
4 K K 

′′ )− C (x − ′′ )− C (y −· exp 
2πk 

(C (x − x ′ ) + C (y − x x x ′ )) − 1 ,
K 

and 

J− k2 y2 − 4π2 ′′ )
(

2πk 
)

(

K C(x−y) 0 d2 ′ d2 ′′ C(x ′ −x 
K D − 1 4KGk (x − y) = e 1 + x x e e + O y ,04 

where 
′′ )− C (x − ′′ )− C (y − ′ )D = C (x − x ′ ) + C (y − x x x . 

(d) Write the perturbation result in terms of an effective interaction K, and show that 

perturbation theory fails for K larger than a critical Kc. 

• The above expression for Gk (x − y) is very similar to that of obtained in dealing with 

the renormalization of the Coulomb gas of vortices in the XY model. Following the steps 

in the lecture notes, without further calculations, we find 

22 
− k2 y 1 2πk 2π ln(r/a)

C(x−y) 0 −KGk (x − y) = e 1 + × × C (x − y)× 2π drr3 e K 

4 2 K 

− k2 π3k2 2π ln(r/a)
C(x−y) 2 −K K= e 1 + 

K2 
y0C (x − y) drr3 e . 

The second order term can be exponentiated to contribute to an effective coupling constant 

Keff , according to 
π3 ∞1 1 2π/K 2 drr3−2π/K= − a y .0Keff K K2

a 

Clearly, the perturbation theory is inconsistent if the above integral diverges, i.e. if 

π 
K > ≡ Kc. 

2 

(e) Recast the perturbation result in part (d) into renormalization group equations for K 
ℓand y0, by changing the “lattice spacing” from a to ae . 

• After dividing the integral into two parts, from a to ab and from ab to ∞, respectively, 

and rescaling the variable of integration in the second part, in order to retrieve the usual 

limits of integration, we have 

π3 ab ∞π31 1 

K2
2π/K

0
2 drr3−2π/K − 2π/K 

0
2b4−2π/K drr3−2π/K= − a y a × y × . 

Keff K a K2
a 
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2(To order y0 , we can indifferently write K or K ′ (defined below) in the last term.) In 

other words, the coarse-grained system is described by an interaction identical in form, 

but parameterized by the renormalized quantities 

1 1 π3 ab 
2π/K 2 drr3−2π/K= − a y ,

K ′ K K2 0 
a 

and 
′ 2 b4−2π/K 2 y = y0 .0 

With b = eℓ ≈ 1+ ℓ, these RG relations are written as the following differential equations, 

which describe the renormalization group flows 

 
dK ( J 

 π3 4 2 4 
 = a y0 + O y0dℓ . 
 dy0 

( π ) 
( J

3 = 2− y0 + O y0dℓ K

(f) Using the recursion relations, discuss the phase diagram and phases of this model. 

• These RG equations are similar to those of the XY model, with K (here) playing the 

role of T in the Coulomb gas. For non-vanishing y0, K is relevant, and thus flows to larger 

and larger values (outside of the perturbative domain) if y0 is also relevant (K > π/2), 

suggesting a smooth phase at low temperatures (T ∼ K−1). At small values of K, y0 is 

irrelevant, and the flows terminate on a fixed line with y0 = 0 and K ≤ π/2, corresponding 
to a rough phase at high temperatures. 

(g) For large separations |x − y|, find the magnitude of the discontinuous jump in 

|h(x)− h(y)|2 at the transition. 

• We want to calculate the long distance correlations in the vicinity of the transition. 

Equivalently, we can compute the coarse-grained correlations. If the system is prepared at 

K = π/2− and y0 ≈ 0, under coarse-graining, K → π/2− and y0 → 0, resulting in 

2k2 
Gk (x − y) → (Gk)0 = exp − C (x − y) . 

π 

From part (b), 

2 d2 � 4 2 
[h (x) − h (y)] = − Gk (x − y) = C (x − y) = ln |x − y| . 

� π2dk2 k=0 π 

On the other hand, if the system is prepared at K = π/2+, then K → ∞ under the RG 

(assuming that the relevance of K holds also away from the perturbative regime), and 

2
[h (x)− h (y)] → 0. 

29
 

∫

〈 〉

〈 〉

〈 〉

[ ]



  

 

 

 

 

 

 �
 

2
Thus, the magnitude of the jump in [h (x) − h (y)] at the transition is 

2 
ln |x − y| . 

π2 

******** 

12. Roughening and duality: Consider a discretized version of the Hamiltonian in the 

previous problem, in which for each site i of a square lattice there is an integer valued 

height hi. The Hamiltonian is 

K 
βH = |hi − hj |∞ ,

2 
<i,j> 

where the “∞” power means that there is no energy cost for Δh = 0; an energy cost of 

K/2 for Δh = ±1; and Δh = ±2 or higher are not allowed for neighboring sites. (This is 

known as the restricted solid on solid (RSOS) model.) 

(a) Construct the dual model either diagrammatically, or by following these steps: 

(i) Change from the N site variables hi, to the 2N bond variables nij = hi − hj . Show 

that the sum of nij around any plaquette is constrained to be zero. 
J 2π

(ii) Impose the constraints by using the identity dθeiθn/2π = δn,0, for integer n.0 

(iii) After imposing the constraints, you can sum freely over the bond variables nij to 

obtain a dual interaction ṽ(θi − θj) between dual variables θi on neighboring plaquettes. 

• (i) In terms of bond variables nij = hi − hj , the Hamiltonian is written as 

K ∞−βH = − |nij | . 
2 

(ij)

Clearly, 

nij = hi1 − hi2 + hi2 − hi3 + · · · + hin−1 − hin 
= 0, 

any closed loop 

since hi1 = hin 
for a closed path. 

(ii) This constraint, applied to the N plaquettes, reduces the number of degrees of freedom 

from an apparent 2N (bonds), to the correct figure N , and the partition function becomes 
I 

−βHZ = e δL 
αn
ij
,0, 

�ij� 
α{nij} 

αwhere the index α labels the N plaquettes, and nij is non-zero and equal to nij only if 

the bond (ij) belongs to plaquette α. Expressing the Kronecker delta in its exponential 

representation, we get 
L 2π L 

−K |nij |∞ I dθα iθα n α 
2 ij �ij� �ij�Z = e e . 

2π0α{nij} 
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(iii) As each bond belongs to two neighboring plaquettes, we can label the bonds by αβ 

rather than ij, leading to 
  

Z = 
I 

γ 

2π 

0 

dθγ 
2π 

{nαβ} 
exp  

(αβ) 
− K 

2 
|nαβ|∞ 

+ i (θα − θβ)nαβ 
 

= 
I 

γ 

2π 

0 

dθγ 
2π 

I 

(αβ) nαβ 

exp − K 

2 
|nαβ|∞ 

+ i (θα − θβ)nαβ . 

2

Note that if all plaquettes are traversed in the same sense, the variable nαβ occurs in 

opposite senses (with opposite signs) for the constraint variables θα and θβ on neighboring 

plaquettes. We can now sum freely over the bond variables, and since 

K −K − |n|+ i (θα − θβ)n = 1 + 2e 
2 

cos (θα − θβ) ,exp
 
n=0,+1,−1 

we obtain 

2

  
2π dθγ −K 

cos (θα − θβ)
[
 ]


I
 
Z
 =
 ln
 1 + 2e
exp
 .

 
 

2π0γ (αβ) 

(b) Show that for large K, the dual problem is just the XY model. Is this conclusion 

consistent with the renormalization group results of the previous problem? (Also note the 

connection with the loop model.) 

• This is the loop gas model , and for K large, 

ln

[


2−K 

1 + 2e cos (θα − θβ)
]


2−K ≈ 2e cos (θα − θβ) , 

and 
2π 

2
−K 

2π0γ 

This is none other than the partition function for the XY model, if we identify 

L

dθγ 2e cos(θα−θβ)
I
 

Z
 αβ =
 e
 .
 

2−K 

KXY = 4e ,
 

consistent with the results of another problem, in which we found that the low temperature 

behavior in the roughening problem corresponds to the high temperature phase in the XY 

model, and vice versa. 

(c) Does the one dimensional version of this Hamiltonian, i.e. a 2d interface with 

K −βH = − |hi − hi+1|∞ ,
2 

i 
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have a roughening transition? 

• In one dimension, we can directly sum the partition function, as 

K K∞ ∞
Z = exp − |hi − hi+1| = exp − |ni|

2 2 
{hi} i {ni} i 

I I

( ) ( )NK ∞ −K/2 −K/2= exp − |ni| = 1 + 2e = 1 + 2e ,
2 

i ni i 

(ni = hi − hi+1). The expression thus obtained is an analytic function of K (for 0 < K < 

∞), in the N → ∞ limit, and there is therefore no phase transition at a finite non-zero 

temperature. 

******** 
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