
8.334: Statistical Mechanics II Spring 2014 Test 3 

Review Problems 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The intent of this sheet is as a reminder of important formulas and definitions, and not as 

a compact transcription of the answers provided here. The test will be composed entirely 

from a subset of the following problems as well as those in problem sets 5 and 6. 
Thus if you are familiar and comfortable with these problems, there will be no surprises! 

******** 

1. Continuous spins: In the standard O(n) model, n component unit vectors are placed 

on the sites of a lattice. The nearest neighbor spins are then connected by a bond JSsi sj.· S

In fact, if we are only interested in universal properties, any generalized interaction f(Ssi ·Ssj) 

leads to the same critical behavior. By analogy with the Ising model, a suitable choice is 

exp [f(S · Ssj)] = 1 + (nt)S · Ssi si sj , 

resulting in the so called loop model. 

(a) Construct a high temperature expansion of the loop model (for the partition function 

Z) in the parameter t, on a two-dimensional hexagonal (honeycomb) lattice. 

(b) Show that the limit n → 0 describes the configurations of a single self-avoiding polymer 

on the lattice. 

******** 

2. Potts model I: Consider Potts spins si = (1, 2, · · · , q), interacting via the Hamiltonian 

−βH = K

L


<ij> δsi,sj .
 

(a) To treat this problem graphically at high temperatures, the Boltzmann weight for each 

bond is written as 
J

Kδsi,sj

with g(s, s ′) = qδs,s ′ − 1. Find C(K) and T (K). 

(b) Show that 

q q q 

(


C(K) [1 + T (K)g(si, sj)] ,exp
 =
 

L


g(s, s
 ′ ) =
 0
 ,

L


g(s1, s)g(s, s2) = qg(s1, s2) , and 
L


′′ )g(s , s)
 = q
 2(q − 1).g(s, s
 
s=1 s=1 s,s ′ 

(c) Use the above results to calculate the free energy, and the correlation function 

(g(sm, sn)) for a one–dimensional chain. 
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(d) Calculate the partition function on the square lattice to order of T 4 . Also calculate 

the first term in the low–temperature expansion of this problem. 

(e) By comparing the first terms in low- and high–temperature series, find a duality rule 

for Potts models. Don’t worry about higher order graphs, they will work out! Assuming 

a single transition temperature, find the value of Kc(q). 

(f) How do the higher order terms in the high–temperature series for the Potts model 

differ from those of the Ising model? What is the fundamental difference that sets apart 

the graphs for q = 2? (This is ultimately the reason why only the Ising model is solvable.) 

******** 

3. Potts model II: An alternative expansion is obtained by starting with 

exp [Kδ(si, sj)] = 1 + v(K)δ(si, sj), 

where v(K) = eK − 1. In this case, the sum over spins does not remove any graphs, and 

all choices of distributing bonds at random on the lattice are acceptable. 
L 

(a) Including a magnetic field h δsi,1, show that the partition function takes the form i 

L I

[ ( )]

nb hnc
sZ(q,K, h) = v 

c 

× q − 1 + e , 
all graphs clusters c in graph 

c cwhere n and n are the numbers of bonds and sites in cluster c. This is known as the b s 

random cluster expansion. 

(b) Show that the limit q → 1 describes a percolation problem, in which bonds are randomly 

distributed on the lattice with probability p = v/(v+1). What is the percolation threshold 

on the square lattice? 

(c) Show that in the limit q → 0, only a single connected cluster contributes to leading 

order. The enumeration of all such clusters is known as listing branched lattice animals. 

******** 

4. Potts duality: Consider Potts spins, si = (1, 2, · · · , q), placed on the sites of a square 

lattice of N sites, interacting with their nearest-neighbors through a Hamiltonian 

L 

−βH = K δsi,sj . 
<ij> 

(a) By comparing the first terms of high and low temperature series, or by any other 

method, show that the partition function has the property 

� � � �2N eK − 12NKΞ −K −N KZ(K) = qe e = q e + q − 1 Ξ , 
eK + (q − 1) 
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for some function Ξ, and hence locate the critical point Kc(q). 

(b) Starting from the duality expression for Z(K), derive a similar relation for the internal 

energy U(K) = (βH) = −∂ lnZ/∂ lnK. Use this to calculate the exact value of U at the 

critical point. 

******** 

5. Anisotropic Random Walks: Consider the ensemble of all random walks on a square 

lattice starting at the origin (0,0). Each walk has a weight of t ℓx × ty
ℓy , where ℓx and ℓyx 

are the number of steps taken along the x and y directions respectively. 

(a) Calculate the total weight W (x, y), of all walks terminating at (x, y). Show that W is 

well defined only for t = (tx + ty)/2 < tc = 1/4. 

(b) What is the shape of a curve W (x, y) = constant, for large x and y, and close to the 

transition? 

(c) How does the average number of steps, (ℓ) = (ℓx + ℓy), diverge as t approaches tc? 

******** 

6. Anisotropic Ising Model: Consider the anisotropic Ising model on a square lattice with 

a Hamiltonian 
L

( J 

−βH = Kxσx,yσx+1,y + Kyσx,yσx,y+1 ; 
x,y 

i.e. with bonds of different strengths along the x and y directions. 

(a) By following the method presented in the text, calculate the free energy for this model. 

You do not have to write down every step of the derivation. Just sketch the steps that 

need to be modified due to anisotropy; and calculate the final answer for lnZ/N . 

(b) Find the critical boundary in the (Kx, Ky) plane from the singularity of the free energy. 
˜Show that it coincides with the condition Kx = Ky, where K̃ indicates the standard dual 

interaction to K. 

(c) Find the singular part of lnZ/N , and comment on how anisotropy affects critical 

behavior in the exponent and amplitude ratios. 

******** 

7. Müller–Hartmann Zittartz estimate of the interfacial energy of the d = 2 Ising model 

on a square lattice: 

(a) Consider an interface on the square lattice with periodic boundary conditions in one 

direction. Ignoring islands and overhangs, the configurations can be labelled by heights 

hn for 1 ≤ n ≤ L. Show that for an ansiotropic Ising model of interactions (Kx, KY ), the 

energy of an interface along the x-direction is 
L 

−βH = −2KyL− 2Kx |hn+1 − hn| . 
n 
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(b) Write down a column–to–column transfer matrix (h|T |h′), and diagonalize it. 

(c) Obtain the interface free energy using the result in (b), or by any other method. 

(d) Find the condition between Kx and Ky for which the interfacial free energy vanishes. 

Does this correspond to the critical boundary of the original 2d Ising model? 

******** 

8. Anisotropic Landau Theory: Consider an n–component magnetization field S in m(x) 

d–dimensions.
 

(a) Using the previous problems on anisotropy as a guide, generalize the standard Landau–
 

Ginzburg Hamiltonian to include the effects of spacial anisotropy.
 

(b) Are such anisotropies “relevant?”
 

(c) In La2CuO4, the Cu atoms are arranged on the sites of a square lattice in planes, 

and the planes are then stacked together. Each Cu atom carries a “spin”, which we 

assume to be classical, and can point along any direction in space. There is a very strong 

antiferromagnetic interaction in each plane. There is also a very weak interplane interaction 

that prefers to align successive layers. Sketch the low–temperature magnetic phase, and 

indicate to what universality class the order–disorder transition belongs. 

******** 

9. Anisotropic nonlinear σ model: Consider unit n-component spins, Ss(x) = (s1, · · · , sn) 
L 

2with α sα = 1, subject to a Hamiltonian 

1 
dd 

2 2βH = x (∇Ss ) + gs .12T 
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For g = 0, renormalization group equations are obtained through rescaling distances by 
(n−1) a factor b = eℓ, and spins by a factor ζ = bys with ys = − T , and lead to the flow 4π 

equation 
dT (n − 2) 

= −ǫT + T 2 + O(T 3),
dℓ 2π 

where ǫ = d− 2. 

(a) Find the fixed point, and the thermal eigenvalue yT . 

(b) Write the renormalization group equation for g in the vicinity of the above fixed point, 

and obtain the corresponding eigenvalue yg. 

(c) Sketch the phase diagram as a function of T and g, indicating the phases, and paying 

careful attention to the shape of the phase boundary as g → 0. 

******** 

10. Matrix models: In some situations, the order parameter is a matrix rather than 

a vector. For example, in triangular (Heisenberg) antiferromagnets each triplet of spins 

aligns at 120◦, locally defining a plane. The variations of this plane across the system are 

described by a 3 × 3 rotation matrix. We can construct a nonlinear σ model to describe a 

generalization of this problem as follows. Consider the Hamiltonian 

βH = 
K

dd x tr ∇M(x) · ∇MT (x) ,
4 

where M is a real, N × N orthogonal matrix, and ‘tr’ denotes the trace operation. The 

condition of orthogonality is that MMT = MTM = I, where I is the N × N identity 

matrix, and MT is the transposed matrix, Mij 
T = Mji. The partition function is obtained 

by summing over all matrix functionals, as 

( J 

−βH[M(x)] Z = DM(x)δ M(x)MT (x)− I e . 

(a) Rewrite the Hamiltonian and the orthogonality constraint in terms of the matrix ele­

ments Mij (i, j = 1, · · · , N). Describe the ground state of the system. 

(b) Define the symmetric and anti-symmetric matrices 

 

1 ( J 

 + MT σT 
 σ = M = 

2 . 
 

1 ( J 

 π = M −MT = −πT 

2 

Express βH and the orthogonality constraint in terms of the matrices σ and π. 
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(c) Consider small fluctuations about the ordered state M(x) = I. Show that σ can be 

expanded in powers of π as 
1 

σ = I − ππT + · · · . 
2 

Use the orthogonality constraint to integrate out σ, and obtain an expression for βH to 

fourth order in π. Note that there are two distinct types of fourth order terms. Do not 

include terms generated by the argument of the delta function. As shown for the nonlinear 

σ model in the text, these terms do not effect the results at lowest order. 

(d) For an N -vector order parameter there are N − 1 Goldstone modes. Show that an 

orthogonal N × N order parameter leads to N(N − 1)/2 such modes. 

(e) Consider the quadratic piece of βH. Show that the two point correlation function in 

Fourier space is 

(2π)dδd(q + q ′ )
(πij(q)πkl(q ′ )) = [δikδjl − δilδjk] . 

Kq2 

We shall now construct a renormalization group by removing Fourier modes M>(q), 

with q in the shell Λ/b < |q| < Λ. 

(f) Calculate the coarse grained expectation value for (tr(σ))> 
0 at low temperatures after 

removing these modes. Identify the scaling factor, M ′(x ′ ) = M<(x)/ζ, that restores 

tr(M ′) = tr(σ′ ) = N . 

(g) Use perturbation theory to calculate the coarse grained coupling constant K̃. Evaluate 

only the two diagrams that directly renormalize the (∇πij)
2 term in βH, and show that 

 Λ ddN q 1
K̃ = K + .

22 Λ/b (2π)
d q

(h) Using the result from part (f), show that after matrix rescaling, the RG equation for 
′K is given by: 

  

 ΛN − 2 ddq 1
′ bd−2K = K − . 

q22 Λ/b (2π)
d 

(i) Obtain the differential RG equation for T = 1/K, by considering b = 1 + δℓ. Sketch 

the flows for d < 2 and d = 2. For d = 2 + ǫ, compute Tc and the critical exponent ν. 
J

(j) Consider a small symmetry breaking term −h ddx tr(M), added to the Hamiltonian. 

Find the renormalization of h, and identify the corresponding exponent yh. 

Combining RG and symmetry arguments, it can be shown that the 3×3 matrix model 

is perturbatively equivalent to the N = 4 vector model at all orders. This would suggest 
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that stacked triangular antiferromagnets provide a realization of the O(4) universality class; 

see P. Azaria, B. Delamotte, and T. Jolicoeur, J. Appl. Phys. 69, 6170 (1991). However, 

non-perturbative (topological aspects) appear to remove this equivalence as discussed in 

S.V. Isakov, T. Senthil, Y.B. Kim, Phys. Rev. B 72, 174417 (2005). 

******** 

11. The roughening transition: Consider a continuum interface model which in d = 3 is 

described by the Hamiltonian 

βH0 = − 
K

d2 x (∇h)2 ,
2 

where h(x) is the interface height at location x. For a crystalline facet, the allowed values 

of h are multiples of the lattice spacing. In the continuum, this tendency for integer h can 

be mimicked by adding a term 

d2−βU = y0 x cos (2πh) , 

to the Hamiltonian. Treat −βU as a perturbation, and proceed to construct a renormal­

ization group as follows: 

(a) Show that 

  

� � 

L 1 L 

exp i qαh(xα) = exp  
K 

qαqβC(xα − xβ) 

α 0 α<β 

L 

for α qα = 0, and zero otherwise. (C(x) = ln |x|/2π is the Coulomb interaction in two 

dimensions.) 

(b) Prove that 
 

( d2  

|h(x)− h(y)|2
)

= − Gk(x − y) , 
 dk2 k=0 

( ( J )

where Gk(x − y) = exp ik h(x) − h(y) . 

(c) Use the results in (a) to calculate Gk(x − y) in perturbation theory to order of y0 . 
( J

2iπh + −2iπh(Hint: Set cos(2πh) = e e /2. The first order terms vanish according to the 

result in (a), while the second order contribution is identical in structure to that of the 

Coulomb gas described in this chapter.) 

(d) Write the perturbation result in terms of an effective interaction K, and show that
 

perturbation theory fails for K larger than a critical Kc.
 

(e) Recast the perturbation result in part (d) into renormalization group equations for K
 
ℓand y0, by changing the “lattice spacing” from a to ae . 
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(f) Using the recursion relations, discuss the phase diagram and phases of this model. 

(g) For large separations |x − y|, find the magnitude of the discontinuous jump in 
( )

|h(x)− h(y)|2 at the transition. 

******** 

12. Roughening and duality: Consider a discretized version of the Hamiltonian in the 

previous problem, in which for each site i of a square lattice there is an integer valued 

height hi. The Hamiltonian is 

LK 
βH = |hi − hj |

∞ ,
2 

<i,j> 

where the “∞” power means that there is no energy cost for Δh = 0; an energy cost of 

K/2 for Δh = ±1; and Δh = ±2 or higher are not allowed for neighboring sites. (This is 

known as the restricted solid on solid (RSOS) model.) 

(a) Construct the dual model either diagrammatically, or by following these steps: 

(i) Change from the N site variables hi, to the 2N bond variables nij = hi − hj . Show 

that the sum of nij around any plaquette is constrained to be zero. 
J 2π

(ii) Impose the constraints by using the identity dθeiθn/2π = δn,0, for integer n.0 

(iii) After imposing the constraints, you can sum freely over the bond variables nij to 

obtain a dual interaction ṽ(θi − θj) between dual variables θi on neighboring plaquettes. 

(b) Show that for large K, the dual problem is just the XY model. Is this conclusion 

consistent with the renormalization group results of the previous problem? (Also note the 

connection with the loop model.) 

(c) Does the one dimensional version of this Hamiltonian, i.e. a 2d interface with 

−βH = − 
K 

2 

L 

|hi − hi+1|
∞ , 

i 

have a roughening transition? 

******** 
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