
8.334: Statistical Mechanics II Spring 2014 Test 2 

Review Problems 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The intent of this sheet is as a reminder of important formulas and definitions, and not as 

a compact transcription of the answers provided here. If this privilege is abused, it will be 

revoked for future tests. The test will be composed entirely from a subset of the following 

problems, as well as those in problem sets 3 and 4. Thus if you are familiar and 

comfortable with these problems, there will be no surprises! 

******** 

1. Scaling in fluids: Near the liquid–gas critical point, the free energy is assumed to take 

t2−αthe scaling form F/N = g(δρ/tβ), where t = |T − Tc|/Tc is the reduced temperature, 

and δρ = ρ− ρc measures deviations from the critical point density. The leading singular 

behavior of any thermodynamic parameter Q(t, δρ) is of the form tx on approaching the 

critical point along the isochore ρ = ρc; or δρ
y for a path along the isotherm T = Tc. Find 

the exponents x and y for the following quantities: 

(a) The internal energy per particle (H)/N , and the entropy per particle s = S/N. 

(b) The heat capacities CV = T∂s/∂T | , and CP = T∂s/∂T | .V P

(c) The isothermal compressibility κT = ∂ρ/∂P | /ρ, and the thermal expansion coeffi-T 

cient α = ∂V/∂T | /V .P 

Check that your results for parts (b) and (c) are consistent with the thermodynamic 

identity CP − CV = TV α2/κT . 

(d) Sketch the behavior of the latent heat per particle L, on the coexistence curve for 

T < Tc, and find its singularity as a function of t. 

******** 

2. The Ising model: The differential recursion relations for temperature T , and magnetic 

field h, of the Ising model in d = 1 + ǫ dimensions are 

 

dT T 2 
 

 

dℓ 
= − ǫ T + 

2 
, 

 dh 
 =dh . 

dℓ 

(a) Sketch the renormalization group flows in the (T, h) plane (for ǫ > 0), marking the 

fixed points along the h = 0 axis. 
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(b) Calculate the eigenvalues yt and yh, at the critical fixed point, to order of ǫ. 

(c) Starting from the relation governing the change of the correlation length ξ under 
( )

renormalization, show that ξ(t, h) = t−νgξ h/|t|
Δ (where t = T/Tc − 1), and find the 

exponents ν and Δ.
 

(d) Use a hyperscaling relation to find the singular part of the free energy fsing.(t, h), and
 

hence the heat capacity exponent α.
 

(e) Find the exponents β and γ for the singular behaviors of the magnetization and sus­

ceptibility, respectively.
 

(f) Starting the relation between susceptibility and correlations of local magnetizations, 

calculate the exponent η for the critical correlations ((m(0)m(x)) ∼ |x|−(d−2+η)). 

(g) How does the correlation length diverge as T → 0 (along h = 0) for d = 1? 

******** 

3. Longitudinal susceptibility: While there is no reason for the longitudinal susceptibility 

to diverge at the mean-field level, it in fact does so due to fluctuations in dimensions d < 4. 

This problem is intended to show you the origin of this divergence in perturbation theory. 

There are actually a number of subtleties in this calculation which you are instructed to 

ignore at various steps. You may want to think about why they are justified. 

Consider the Landau–Ginzburg Hamiltonian: 

K t 2)22βH = x (∇¢ + m + u(¢ ,dd m)2 ¢ m 
2 2 

describing an n–component magnetization vector ¢ t < 0. m(x), in the ordered phase for
( )

(a) Let ¢ = êℓ+φ¢t(x)êt, and expand βH keeping all terms in the expansion. m(x) m+φℓ(x)

(b) Regard the quadratic terms in φℓ and φ¢t as an unperturbed Hamiltonian βH0, and the 

lowest order term coupling φℓ and φ¢t as a perturbation U ; i.e. 

U = 4um dd xφℓ(x)φ¢t(x)
2 . 

Write U in Fourier space in terms of φℓ(q) and φ¢t(q). 

(c) Calculate the Gaussian (bare) expectation values (φℓ(q)φℓ(q ′ ))0 and (φt,α(q)φt,β(q ′ ))0, 
and the corresponding momentum dependent susceptibilities χℓ(q)0 and χt(q)0. 

¢ ′ ¢ ′(d) Calculate (φ¢t(q1) · φt(q2) φ¢t(q1) · φt(q2))0 using Wick’s theorem. (Don’t forget that 

φ¢t is an (n − 1) component vector.) 

(e) Write down the expression for (φℓ(q)φℓ(q ′ )) to second-order in the perturbation U . 

Note that since U is odd in φℓ, only two terms at the second order are non–zero. 
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(f) Using the form of U in Fourier space, write the correction term as a product of two 

4–point expectation values similar to those of part (d). Note that only connected terms 

for the longitudinal 4–point function should be included. 

(g) Ignore the disconnected term obtained in (d) (i.e. the part proportional to (n − 1)2), 

and write down the expression for χℓ(q) in second order perturbation theory. 

(h) Show that for d < 4, the correction term diverges as qd−4 for q → 0, implying an 

infinite longitudinal susceptibility. 

******** 

4. Crystal anisotropy: Consider a ferromagnet with a tetragonal crystal structure. Cou­

pling of the spins to the underlying lattice may destroy their full rotational symmetry. The 

resulting anisotropies can be described by modifying the Landau–Ginzburg Hamiltonian 

to 
K t (

2
)2 r2 2 2 2dd m)2βH = x (∇¢ + ¢ + ¢ +m u m m v m m ,1 + 1 ¢2 2 2 

L

2 n 2where ¢ · · · , mn ¢ = (d n 3 for magnets in three dimensions). m ≡ (m1, ), andm = = i=1 mi 

Here u > 0, and to simplify calculations we shall set v = 0 throughout. 

(a) For a fixed magnitude |¢m|; what directions in the n component magnetization space 

are selected for r > 0, and for r < 0? 

(b) Using the saddle point approximation, calculate the free energies (lnZ) for phases 

uniformly magnetized parallel and perpendicular to direction 1. 

(c) Sketch the phase diagram in the (t, r) plane, and indicate the phases (type of order), 

and the nature of the phase transitions (continuous or discontinuous). 

(d) Are there Goldstone modes in the ordered phases? 

(e) For u = 0, and positive t and r, calculate the unperturbed averages (m1(q)m1(q ′ ))0 
and (m2(q)m2(q ′ ))0, where mi(q) indicates the Fourier transform of mi(x). 

J

(f) Write the fourth order term U ≡ u dd m2)2, in terms of the Fourier modes mi(q). x(¢

(g) Treating U as a perturbation, calculate the first order correction to (m1(q)m1(q ′ )). 

(You can leave your answers in the form of some integrals.) 

(h) Treating U as a perturbation, calculate the first order correction to (m2(q)m2(q ′ )). 

(i) Using the above answer, identify the inverse susceptibility χ−1, and then find the 22 

transition point, tc, from its vanishing to first order in u. 

(j) Is the critical behavior different from the isotropic O(n) model in d < 4? In RG 

language, is the parameter r relevant at the O(n) fixed point? In either case indicate the 

universality classes expected for the transitions. 

******** 
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5. Cubic anisotropy– Mean-field treatment: Consider the modified Landau–Ginzburg 

Hamiltonian 

� 

n
� 

βH = dd x 
K 

2 
(∇¢m)2 + 

t 

2 
¢m 2 + u(¢m 2)2 + v 

t

m 4 i , 
i=1 

for an n–component vector ¢ = (m1, m2, · · · , mn). The “cubic anisotropy” m(x) term 
Ln 4, breaks the full rotational symmetry and selects specific directions. i=1 mi 

(a) For a fixed magnitude |¢m|; what directions in the n component magnetization space 

are selected for v > 0 and for v < 0? What is the degeneracy of easy magnetization axes 

in each case? 

(b) What are the restrictions on u and v for βH to have finite minima? Sketch these 

regions of stability in the (u, v) plane. 

(c) In general, higher order terms (e.g. u6(¢
2)3 with u6 > 0) are present and ensure m

stability in the regions not allowed in part (b); (as in case of the tricritical point discussed 

in earlier problems). With such terms in mind, sketch the saddle point phase diagram in 

the (t, v) plane for u > 0; clearly identifying the phases, and order of the transition lines. 

(d) Are there any Goldstone modes in the ordered phases? 

******** 

6. Cubic anisotropy– ε–expansion: 

(a) By looking at diagrams in a second order perturbation expansion in both u and v show 

that the recursion relations for these couplings are 

 

du [ ]

 

 =εu− 4C (n + 8)u 2 + 6uv 
dℓ , 

 dv [

2 
]

 =εv − 4C 12uv + 9v 
dℓ 

where C = KdΛ
d/(t + KΛ2)2 ≈ K4/K

2, is approximately a constant. 

(b) Find all fixed points in the (u, v) plane, and draw the flow patterns for n < 4 and 

n > 4. Discuss the relevance of the cubic anisotropy term near the stable fixed point in 

each case. 

(c) Find the recursion relation for the reduced temperature, t, and calculate the exponent 

ν at the stable fixed points for n < 4 and n > 4. 

(d) Is the region of stability in the (u, v) plane calculated in part (b) of the previous 

problem enhanced or diminished by inclusion of fluctuations? Since in reality higher order 

terms will be present, what does this imply about the nature of the phase transition for a 

small negative v and n > 4? 
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7. Cumulant method: Apply the Niemeijer–van Leeuwen first order cumulant expansion 
L 

to the Ising model on a square lattice with −βH = K <ij> σiσj , by following these steps: 

(a) For an RG with b = 2, divide the bonds into intra–cell components βH0; and inter–cell 

components U . 

(b) For each cell α, define a renormalized spin σα 
′ = sign(σα 

1 + σα 
2 + σα 

3 + σ4 ). This choice α
L4

becomes ambiguous for configurations such that σα
i = 0. Distribute the weight of i=1 

these configurations equally between σα 
′ = +1 and −1 (i.e. put a factor of 1/2 in addition 

to the Boltzmann weight). Make a table for all possible configurations of a cell, the internal 

probability exp(−βH0), and the weights contributing to σα 
′ = ±1. 

(c) Express (U)0 in terms of the cell spins σ′ ; and hence obtain the recursion relation α

K ′ (K). 

(d) Find the fixed point K∗, and the thermal eigenvalue yt. 
L 

(e) In the presence of a small magnetic field h σi , find the recursion relation for h; and i 

calculate the magnetic eigenvalue yh at the fixed point. 

(f) Compare K∗ , yt, and yh to their exact values. 

******** 

8. Migdal–Kadanoff method: Consider Potts spins si = (1, 2, · · · , q), on sites i of a 

hypercubic lattice, interacting with their nearest neighbors via a Hamiltonian 

t 

−βH = K δsi,sj . 
<ij> 

(a) In d = 1 find the exact recursion relations by a b = 2 renormalization/decimation 

process. Indentify all fixed points and note their stability. 

(b) Write down the recursion relation K ′ (K) in d–dimensions for b = 2, using the Migdal– 

Kadanoff bond moving scheme. 

(c) By considering the stability of the fixed points at zero and infinite coupling, prove the 

existence of a non–trivial fixed point at finite K∗ for d > 1. 

(d) For d = 2, obtain K∗ and yt, for q = 3, 1, and 0. 

******** 

9. The Potts model: The transfer matrix procedure can be extended to Potts model, 

where the spin si on each site takes q values si = (1, 2, · · · , q); and the Hamiltonian is 
LN

−βH = K + KδsN ,s1 .i=1 δsi,si+1 
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(a) Write down the transfer matrix and diagonalize it. Note that you do not have to solve
 

a qth order secular equation as it is easy to guess the eigenvectors from the symmetry of
 

the matrix.
 

(b) Calculate the free energy per site.
 

(c) Give the expression for the correlation length ξ (you don’t need to provide a detailed
 

derivation), and discuss its behavior as T = 1/K → 0.
 

******** 
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