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PROFESSOR: This is 8.333 Statistical Mechanics. And I'll start by telling you a little bit about the

syllabus before going through the structure of the course. So what I have written

here is a, kind of, rough definition of statistical mechanics from my perspective. And

the syllabus is a guide to how we are going to approach this object. So let's take a

look at the syllabus over there.

So the first thing that you're going to focus on is, what is it that you're trying to

describe? And these are the equilibrium properties that are described best through

what I've been doing section one, which has to do with thermodynamics. You'll start

today with thermodynamics. Basically, it's a phenomenological approach, so you

essentially look at something, as kind of a black box, without knowing what the

ingredients are, and try to give some kind of description of how it's function and

properties change.

And these can be captured, for the case of thermal properties of matter through the

laws of thermodynamics, which we will set out in this first section, which will roughly

take us the first four lectures of the course.

Then I said that statistical mechanics is a probabilistic approach. So we need to

establish what the language of probability is. And that can be the topic for the

second two and half lectures of the course. It is something that is less physics-y, but

since the topic itself has to deal with probabilities, it is very important, from my

perspective, to set out the language and the properties of systems that are

described probabilistically.

Separately, we'll devote a couple of lectures to do so. And in particular, it is very

important that the laws of probability, kind of, simplify when you're dealing with a
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large number of variables, as captured, for example, by what we call the central limit

theorem.

So you can see that the third element of this course, which is the law of large

numbers, is inherent also to what simplification you will see in the section on

probability. And feeds back very much into how statistical mechanics is developed.

But then we said large number of degrees of freedom. So what are these degrees

of freedom? Well, this is now taking a different perspective. For us in

thermodynamics, when you look at the system as a black box, and try to develop

laws based on observations, we say that well, from the perspective of physics, we

know that this box contains atoms and molecules.

And these atoms and molecules are following very specific laws, either from

Newtonian mechanics or quantum mechanics. And so if we know everything about

how atoms and molecules behave, then we should be able to derive how large

collections of them behave. And get the laws of thermodynamics as a consequence

of these microscopic degrees of freedom and their dynamics.

And so that's what we will discuss in the third part of the course that is devoted to

kinetic theory. We will see that even at that stage, it is beneficial to, rather than

follow individual particles in a system, to adopt a probabilistic approach, and think

about densities, and how those densities evolve according to Liouville's Theorem.

And what we will try to also establish is a very distinct difference that exists between

thermodynamics, and where things are irreversible and going one direction, and

Newtonian, or quantum mechanics, where things are reversible in time. And we'll

see that really it's a matter of adapting the right perspective in order to see that

these two ways of looking at the same system are not in contradiction.

So having established these elements, we will then finally be in the place where we

can discuss statistical mechanics in terms of some postulates about how

probabilities behave for systems that are in equilibrium. And how based on those

postulates, we can then derive all the laws of thermodynamics and all the properties
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of thermodynamics systems. That they're ordained while observations and

phenomenological theories before.

Now initially, in section four, we will do that in the context of classical systems--

description of particles following classical laws of motion. And, again, as a first

simplification, we will typically deal with non-interacting systems, such as ideal gas.

And make sure that we understand the properties of this important fundamental

system from all possible perspectives.

Then in section five, we will go on to more realistic systems where there are

interactions among these particles. And there are two ways to then deal with

interactions. You can either go by the way of perturbation theory. We can start with

ideal system and add a little bit of interaction, and see how that changes things. And

we develop some elements of graphical perturbation theories in this context.

Or, you can take another perspective, and say that because of the presence of

interactions, the system really adopts a totally different type of behavior. And there's

a perspective known as mean field theory that allows you to do that. Then see how

the same system can be present in different phases of matter, such as liquids and

gas, and how this mean field type of prescription allows you to discuss the

transitions between the different types of behavior.

Eventually, you will go on, towards the last quarter of the course, rather than the

classical description of matter to a quantum description of the microscopic degrees

of freedom. And we will see how the differences and similarities between quantum

statistical mechanics, classical statistical mechanics, emerge. And just, historically,

of course, radius macroscopic properties of the matter, the black body laws, or heat

capacities, have been very important in showing the limitations of classical

description of matter, and the need to have something else, such as the quantum

description.

We will not spend too much time, more than three lectures, on the sort of principles

of quantum statistical mechanics. The place where quantum statistical mechanics

shows its power is in dealing with identical particles, which classically, really are kind
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of not a very well-defined concept, but quantum-mechanically, they are very

precisely defined, what identical particles mean. And there are two classes--

fermions and bosons-- and how even if there's no interaction between them,

quantum statistics leads to unusual behavior for quantum systems of identical

particles, very distinct for fermions and for bosons.

So that's a rough syllables of how the course will be arranged over the next 25, 26

lectures. Any questions about what we're going to cover? OK, then let's go here.

So I will be teaching the course. My research is in condensed matter theory and

statistical physics. So this is a subject that I like very much. And I hope to impart

some of that love of statistical physics to you. And why it is an interesting topic.

Lectures and recitations will be conducted in this room, Monday, Wednesday,

Friday. And you ask, well, what does it mean that both lectures and recitations are

here? Well, for that you will have to consult the timetable. And that's probably the

most important part of this web page. And it tells you, for example, that the first five

events for the course are all going to be lectures Monday, Wednesday, Friday of

next week.

And the first recitation will come up on Monday, September the 16th. And the

reason for that is that the first problem set will be due on the 18th. And I will arrange

for you to have six recitations on the six events that are before the due dates of

those problem sets.

Also indicated here is the due dates, naturally, of the problem sets. And although I

had indicated that this will be handed out tomorrow, the first problem set is already

available on the web, so you can start going to take a look at that. And eventually,

also on the web page, will be posted the solutions. And the first one will be posted

here. Of course, it's not available yet. Surprisingly.

Once the due date has passed on the date that is indicated, the solutions will be

posted. Also indicated here is that there will be various tests. The first test will fall on

October 2. And another time and recitations will take place are prior to the tests. So
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there is actually three tests, and there will be three citations that will take place

before that.

And, ultimately, at the end, there will be a final exam. It's date I don't know yet. So I

just randomly put it on the Monday of the week where the final exams will be held.

And once the actual date is announced by the registrar, I will make sure that I put

the correct date and place in this place.

OK, so that's the arrangement of the various lectures and recitations. In addition to

me, the teaching staff consists of Max [? Imachaov ?] and Anton Goloborodko.

Anton is here, sitting at that extreme corner. Max, I believe, is now in Paris. OK,

both of them work on biological systems that use a lot of statistical physics content

to them. So maybe they will tell you some interesting problems related to that in the

recitations.

At this point in time, they have both set their office hours to be Thursday, 3:00 to

5:00, in their lab, which is close to where the medical facilities are. If you find that

inconvenient, you could potentially change that, or you could get in touch with either

the TAs, or myself, when you want to have specific time to meet us. Otherwise, I

have indicated my own availability to be the half hours typically after lectures on

Monday, Wednesdays, and Fridays.

One other set of important things to note is how the course is organized. So I

already mentioned to you what the syllabus of the course is. I indicated where and

when the lectures and recitations are going to take place. This is the web page that

I have been surfing through. And all of the material will be posted through the web

page, so that's where you have to go for problem sets, solutions, et cetera.

Also, grades. And, in particular, I have my own system of posting the grades, for

which I need a pseudonym from each one of you. So if you could all go through this

checking online, indicate your name, your email address, and choose a pseudonym,

which I emphasize has to be different from your real name. And if it is your real

name, I have to randomly come up with something like "forgot to put pseudonym" or

something. I cannot have your real name followed by the grades. OK?
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I'll discuss anonymous comments, et cetera, later on. As you will see, I will hand out,

through the web page, extensive lecture notes covering all of the material that I talk

about. So in principle, you don't need any textbooks. You can refer to the notes and

what you write in the lectures. But certainly, I-- some people like to have a book

sitting on their bookshelf. So I have indicated a set of books that you can put on

your bookshelf. And hopefully consult for various topics at different stages. And I

will, through the problem sets, indicate what are good useful chapters or parts of

these books to take a look at.

Now how is the grade for the course constructed? An important part of it is through

this six problem sets that we mentioned. So each one of them will count for 5%, for

a total of 30% going towards the contribution of the problem sets. I have no problem

with you forming study groups, as long as each person, at the end, writes their own

solution. And I know that if you look at around sufficiently, you can find solutions

from previous years, et cetera, but you will really be cheating yourself. And I really

bring your attention to the code of honor that is part of the MIT integrity handbook.

We have indicated, through the schedule page, the timeline for this six problem sets

are due. They are typically due at 5:00 PM on the date that is indicated on that

page, and also on the problem set. And the physics department will set up a

Dropbox, so you can put the problem set there, or you can bring it to the lecture on

the date that it is due. That's also acceptable.

There is a grey area of about a day or so sometime, between when the problem set

is due and when the solutions are posted. If problem sets are handed in during that

gray area, they will count towards final 50%, rather than full towards the grade.

Unless you sort of write to me a good excuse that I can give you an extension.

Now every now and then, people encounter difficulties, some particular week you

are overwhelmed, or whatever, and you can't do the particular problem set, and

they ask me for an excuse of some form. And rather than doing that, I have the

following metric. That is, each one of these problem sets you will find that there's a

set of problems that are indicated as optional.
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You can do those problems. And they will be graded like all the other problems. And

in case, at some later time, you didn't hand in some problem set, or you miss half of

the problem set, et cetera, what you did on these optional problems can be used to

make up your grade, pushing it, eventually, up to the 30% mark.

If you don't do any of the optional problems, you just do the required problem, you

will correctly you will reach the 30% mark. If you do every single problem, including

optional ones, you will not get more than 30%, so the 30% is upper-bound. So

there's that.

Then you have the three tests that will be taking place during the lecture time, 2:30

to 4:00, here. Each one of them will count 15%, so that's another 45%. And the

remaining 25% will be the final exam that will be scheduled in the finals week. So

basically, that's the way that the grades are made up.

And the usual definition of what grades mean-- typically, we have been quite

generous. I have to also indicate that things will not be graded on a curve. So that's

a MIT policy. And there are some links here to places that you can go to if you

encounter difficulties during the semester. So any questions about the organization

of the course?

OK, so let's see what else we have. OK, course outline and schedule, we already

discussed. They're likely to be something that are unexpected, or some things that

have to be changed. Every now and then there is going to be a hurricane almost

with probability, close to one. We will have a hurricane sometime during the next

month or so.

We may have to postpone a particular lectures accordingly. And then the

information about that will be posted here. Currently, the only announcement is

what I had indicated to you before. Please check in online indicating that you are

taking this course, and what your pseudonym is going to be. OK?

I give you also the option, I would certainly welcome any questions that you may

have for me here. Please feel free to interrupt. But sometimes people, later on,
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encounter questions. And for whatever reason, it may be question related to the

material of the course. It may be related to when various things are due, or it may

be there is some wrong notation in the problem set or whatever, you can certainly

anonymously send this information to me. And I will try to respond. And anonymous

responses will be posted and displayed web page here. Currently there is none, of

course.

And, finally, something that-- OK, so there's a web page where the problems will be

posted. And I want to emphasize that the web page where the solutions are posted,

you may see that you cannot get to it. And the reason would be that you don't have

an MIT certificate. So MIT certificates are necessary to reach the solution page.

And also they are necessary to reach the page that is devoted to tests. And actually

there is something about the way that I do these three in-class tests that is

polarizing. And some people very much dislike it. But that's the way it is, so let me

tell you how it's going to be conducted.

So you will have this one and a half hour [INAUDIBLE] test. And I can tell you, that

the problems from the test will be out of this collection that I already posted here. So

there is a collection of problems that is posted on this page. And furthermore, the

solutions are posted. So there's a version of this that is with solution. So the

problems will be taken from this, as well as the problem sets that you have already

encountered-- [INAUDIBLE] solution is posted.

So if you are familiar with this material, it should be no problem. And that's the way

the first three tests this will go. The final will be, essentially, a collection of new

problems that are variants of things that you've seen, but will not be identical to

those.

OK, so where is my cursor? And finally, as I indicated, the grades will be posted

according to your pseudonym. So as time goes on, this table will be completed. And

the only other thing to note is that there's actually going to be lecture notes for the

various materials, starting from the first lecture, that will be devoted to

thermodynamics. Any questions? OK.
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So let me copy that first sentence, and we will go on and talk about

thermodynamics.

The phenomenological description of equilibrium properties of microscopic systems.

And get rid of this.

One thing that I should have emphasized when I was doing the syllabus is that I

expect that most of you have seen thermodynamics, have done in a certain amount

of statistical mechanics, et cetera. So the idea here is really to bring the diversity of

backgrounds that you have, for our graduate students, and also I know that our

students from other departments, more or less in line with each other.

So a lot of these things I expect to be, kind of, review materials, or things that you

have seen. That's one reason that we kind of go through them rapidly. And

hopefully, however, there will be some kind of logical systematic way of thinking

about the entirety of them that would be useful to you.

And in particular, thermodynamics, you say, is an old subject, and if you're

ultimately going to derive the laws of thermodynamics from some more precise

microscopic description, why should we go through this exercise? The reason is that

there is really a beautiful example of how you can look at the system as a black box,

and gradually, based on observation, build a consistent mathematical framework to

describe its properties.

And it is useful in various branches of science and physics. And kind of a more 20th

century example that I can think of is, Landau's approach to superconductivity and

superfluidity, where without knowing the microscopic origin of that, based on kind of

phenomenology, you could write down very precise description of the kinds of things

that superconductors and superfluids could manifest.

So let's sort of put yourselves, put ourselves, in the perspective of how this science

of thermodynamics was developed. And this is at the time where Newtonian

mechanics had shown its power. It can describe orbits of things going around the
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sun, and all kinds of other things. But that description, clearly, does not apply to very

simple things like how you heat up a pan of water.

So there's some elements, including thermal properties, that are missing from that

description. And you would like to complete that theory, or develop a theory, that is

able to describe also heat and thermal properties. So how do you go about that,

given that your perspective is the Newtonian prescription?

So first thing to sort of a, kind of, parse among all of these elements, is system. So

when describing Newtonian mechanics, you sort of idealize, certainly you realize

that Newtonian mechanics does not describe things that we see in everyday world.

You kind of think about point particle and how a point particle would move in free

space. And so let's try to do a similar thing for our kinds of systems.

And the thing that is causing us some difficulty is this issue of heat. And so what you

can do is you can potentially isolate your system thermally by, what I would call,

adiabatic laws. Basically say that there's these things, such as heat, that goes into

the system that causes difficulty for me. So let's imagine in the same that I'm

thinking of the point particle, that whatever I have is isolated from the rest of the

universe, in some kind of box that does not allow heat transfer.

This is to be opposed with walls that we would like to eventually look at, which do

allow heat transfer. Let me choose a different color. Let's say green. So ultimately, I

want to allow the exchange of whatever this heat is in thermal properties to go and

take place with my system. OK? Now, this is basically isolation.

The next element is to wait for your system to come to equilibrium. be You realize

that when you, for example, start with something that is like this, you change one of

the walls to allow heat to go into it. Then the system undergoes some changes.

Properties that you're measuring are not well-defined over some period where

these changes taking place, but if you wait sufficiently, then they relax to some new

values. And then you can start making measurements. So this is when properties

don't change.
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And the key here is observation time. This is part of the phenomenology, because it

is not precise. I can't tell you how long you have to wait. It depends on the system

under consideration. And some systems come to equilibrium easily, some take a

long time.

So what are the properties that you can measure? Once things have settled down

and no longer change with time, you can start to measure various properties. The

ones that are very easy for you to identify are things that are associated with

mechanical work, or mechanical properties.

And, for example, if you have a box that contains a gas, you can immediately see

well, what's the volume of the gas? You can calculate what pressure it is exerting on

its environment. So this is for a gas. You could have, for example, a wire. If you

have a wire, you could calculate, rather than its volume, its length and the force with

which you are pulling it.

It could be something like a magnet. And you could put some kind of a magnetic

field on it, and figure out what the magnetization is. And this list of mechanical

properties goes on. But you know that that's not the end of the story. You kind of

expect that there are additional things that have to do with thermal aspects that you

haven't taken into account. And as of yet, you don't quite know what they are. And

you have to gradually build upon those properties.

So you have a system. These are kind of the analogs of the coordinates and

potentially velocities that you would have for any Newtonian particles. A way of

describing your idealized system. And then you want to find rules by which these

coordinates are coevolving, or doing things together. And so for that you rely on

observations, and construct laws of thermodynamics.

All right so this is the general approach. And once you follow this, let's say, what's

the first thing that you encounter? You encounter what is encoded to the zeroth law.

What's the zeroth law? The zeroth law is the following statement, if two systems--

let's call them A and B-- are separately in equilibrium with C-- with a third system--

then they are in equilibrium with each other. This is sort of this statement that the
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property of equilibrium has the character of transitivity. So what that means,

pictorially, is something like this.

Suppose I have my two boxes, A and B. And the third system that we're calling C.

And we've established that A and B are separately in thermal equilibrium with C,

which means that we have allowed exchange of heat to take place between A and

C, between B and C, but currently, we assume nothing-- or we assume that B and C

are not connected to each other.

The statement of the law is that if I were to replace this red with green, so that I

have also exchange that is going on between A and B, then nothing happens. A and

B are already in equilibrium, and the fact that you open the possibility of exchange

of heat between them does not change things. And again, this is this consequence

of transitivity.

And one of its kind of important implications ultimately is that we are allowed now

based on this to add one more coordinate to this description that you have. That

coordinate is the analog of temperature. So this transitivity really implies the

existence of some kind of empirical temperature.

And you may say well, this is such an obvious thing, there should be transitivity.

Well, I want to usually give people examples that transitivity is not a universal

property, by as follows. Suppose that within this room, there is A who wants to go on

a date with C, and B who wants to go on a date with C. I'm pretty sure that it's not

going to be the property that A wants to go through the date with B. It's 20%. All

right.

So let's see how we can ensure this. So we said that if some system has reached

equilibrium, it has some set of coordinates. Let's call them A1, A2, et cetera. There's

some number of them. We don't know. Similarly, here, we have C1, C2, et cetera.

And for B, we have B1, B2.

Now what does it mean that I have equilibrium of A and B? The implication is that if I

have a system by itself, I have a bunch of possible coordinates. I can be anywhere
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in this coordinate space. And if I separately have system C, I have another bunch of

coordinates.

And I can be anywhere in this coordinate space. But if I force A and B to come

together and exchange heat and reaches equilibrium, that is a constraint, which

means that this set of coordinates of the two cannot be independently varied. There

has to be some functional relationship between them, which we can, for example,

cast into this form.

So equilibrium, one constraint, one kind of mathematical relation. Similarly,

equilibrium of-- this was A and C, B and C-- would give us some other function BC

of coordinates of B and coordinates of C equal to 0. OK?

So there is one thing that I can do. I can take this expression and recast it, and write

it as let's say, the first coordinate that describes C is some other function, which I

will call big F AC of coordinates of A. And all coordinates of C, except the first one

that I have removed. Yes?

AUDIENCE: When you put that function F AC or all the coordinates of A, and all the coordinates

of C being zero, is that [? polynomy ?] always going to be true for the first law, or do

you just give an example?

PROFESSOR: It will be always true that I have some set of coordinates for 1, some set of

coordinates with 2, and equilibrium for the two sets of coordinates is going to be

expressible in terms of some function that could be arbitrarily complicated. It may be

that I can't even write this, but I have to graph it, or some kind of place in the

coordinates space.

So what I mean is the following, you can imagine some higher dimensional space

that is spanned by As and the Cs. And each point, where the things are in

equilibrium, will be some-- you can put a cross in this coordinate space. And you

can span the various places where equilibration takes place. And you will have a

surface in this space. And that surface potential you can describe mathematically

like this. OK?

13



And similarly, I can do the same thing. And pick out coordinate C1 here, and write it

as F BC of A1, A2, and C2, C3-- sorry, this is B1, B2. Actually, this brings me, this

question, to maybe one point that I should make. That sometimes during this

course, I will do things, and maybe I will even say that I do things that are physically

rigorous, but maybe not so mathematically.

And one example of this is precisely this statement. That is, if you give a

mathematician and there is a function like this. And then you pick one, C1, and you

write it as a function of all the others, they say, oh, how do know that that's even

possible, that this exists? And generally, it isn't. A simple example would be A

squared plus C squared equals to zero, then C's multiple valued.

So the reason this is physically correct is because if we set up this situation, and

really these very physical quantities, I know that I dialed my C1 to this number here,

and all of the other things adjusted. So this is kind of physically OK, although

mathematically, you would have to potentially do a lot of [INAUDIBLE] to arrive at

this stage. OK.

So now if I have to put all of those things together, the fact that I have equilibrium of

A and B, plus equilibrium of B and C, then implies that there is eliminating C1

between these two, some function that depends on the coordinates of A and

coordinates of C, starting from the second one, equal to some other function. And

these functions could be very different, coordinates of B and coordinates of C

starting from the second one. Yes?

AUDIENCE: Do you need A and C on the left there?

PROFESSOR: A and C, and B and C. Thank you. OK?

So this, everything that we have worked out here, really concerns putting the first

part of this equation in mathematical form. But this statement-- in mathematical

form-- but given the first part of this statement, that is, the second part of the

statement, that is that I know that if I remove that red and make it green, so that

heat can exchange, for the same values of A and B, A and B are in equilibrium, so I
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know that there is a functional form.

So this is equilibrium of A and B, implies that there is this function that we were

looking at before, that relates coordinates of A and B that constrains the equilibrium

that should exist between A and B. OK.

So the first part of the statement of the zeroth law, and the second part of the

statement of the zeroth law can be written mathematically in these two forms. And

the nice part about the first part is that it says that the equilibrium constraint that I

have between A's and B's can mathematically be kind of spread out into some

function on the left that only depends on the coordinates of A, and some function on

the right that only depends on coordinates of B.

So that's important, because it says that ultimately the equilibration between two

objects can be cast mathematically as having some kind of a function-- and we don't

know anything about the form of that function-- that only depends on the

coordinates of A. And equilibration implies that there exists some other function that

only depends on the coordinates of the other one. And in equilibrium, those two

functional forms have to be the same.

Now, there's two ways of getting to this statement from the two things that I have

within up there. One of them is to choose some particular reference system for C.

Let's say your C is seawater at some particular set of conditions. And so then, these

are really constants that are appropriate to see water. And then you have chosen a

function that depends on variables of A, of course of some function of B. Or you can

say, well, I can replace this seawater by something else.

And irrespective of what I choose, A and B, there by our definition in equilibrium with

each other, no matter what I did with C. Or some various range of C things that I

can do, maintaining this equilibrium between A and B. So in that perspective, the C

variables are dummy coordinates. So you should be able to cancel them out from

the two sides of the equation, and get some kind of a form like this.

Either way, what that really means is that if I list all of the coordinates of, say, A, and
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I put it, say, in equilibrium with a bath that is at some particular temperature, the

coordinates of A and B are constrained to lie in some particular surface that would

correspond to that particular theta.

And if I have another system for B, the isotherm could have completely different for

that data. But any time A and B are in equilibrium, they would be lying on the

isotherm that would correspond to the same fate.

Now, again, a mechanical version of this, that is certainly hopefully demystifies any

mystification that may remain, is to think a scale. You have something A on this

scale. And you have something C on this scale. And the scale is balanced. You

replace A with B, and B and C are in balance, then you know that A and B are in

balance with each other.

And that implies that, indeed, there is a property of the objects that you put on the

balance. You can either think of it as mass, or more appropriately, the gravitational

force that they experience, that they need. The thing is balanced. The forces are

equal. So it's essentially the same thing.

Now having established this, then you want to go and figure out what the formula is

that relates the property that needs to be balanced, which is maybe the mass or the

gravitational force in terms of density, volume, et cetera. So that's what you would

like to do here. We would like to be able to relate this temperature function to all the

other coordinates of the system, as we're going to. Any questions? Yes?

AUDIENCE: So how did [INAUDIBLE] that there is the isotherm? Is it coming from the second

conclusion?

PROFESSOR: OK. So what we have said is that when two objects are in equilibrium, this function is

the same between. So let's say that we pick some kind of a vat-- like, it could be a

lake. And we know that the lake is so big that if you put something in equilibrium

with that, it's not extracting too much heat or whatever from the lake can change its

temperature function. So we put our system in equilibrium with the lake, which is at

some particular fixed value of theta. And we don't know what theta is, but it's a
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constant.

So if I were to fiddle around with the system that I put in the lake-- I change its

volume, I change its length, I do something-- and it stays in equilibrium with the

length, there is some function of the coordinates of that system that is equal to

theta. So again, in general, I can make a diagram that has various coordinates of

the system, A1, A2, A3.

And for every combination that is that this theta, I will put a point here. And in

principle, I can vary these coordinates. And this amounts to one constraint in

however many dimensional space I have. So if we span some kind of a surface-- so

if you're in three dimension, there would be a two dimensional surface. If you're in

two dimension, there would be a line that would correspond to this constraint.

Presumably, if I change the lake with something else, so that theta changes, I will be

prescribing some other curve and some other surface in this. Now these are

surfaces in coordinate space of A. In order to be in equilibrium with an entity at the

fixed value of theta, they prescribe some particular surface in the entire coordinate

space and they're called isotherms. OK?

Actually, let's state that a little bit further, because you would like to give a number

to temperature, so many degrees Celsius, or Fahrenheit, or whatever. So how do

you do that? And one way to do that is to use what is called the ideal gas

temperature space-- the ideal gas scale.

So you need some property at this stage in order to construct a temperature scale.

And it turns out that a gas is a system that we keep coming back to again and

again. So as I go through the various laws of thermodynamics, I will mention

something special that happens to this law for the case of this ideal gas. And

actually, right now, define also what I mean by the ideal gas.

So we said that a gas, in general, you can define through coordinates P and V. So if

I put this gas in a piston, and I submerge this piston, let's say in a lake, so that it is

always at whatever temperature this lake is. Then I can change the volume of this,

17



and measure what the pressure is, or change the pressure, and figure out what the

volume is. And I find out that there is a surface in this space where this curve that

corresponds to being equilibrium with this [? leaves-- ?] this is the measure of the

isotherm.

Now the ideal gas law is that when I go to the limit there, V goes to infinity, or P

goes to zero. So that the whole thing becomes very dilute. No matter what gas you

put here-- whether it's argon, oxygen, krypton, whatever-- you find that in this limit,

this shape of this curve is special in the sense that if you were to increase the

volume by a factor of two, the pressure will go down by a factor of two, such that the

product PV is a constant.

And again, this is only true in the limit where either V goes to infinity or P goes to 0.

And this is the property that all gases have. So you say OK, I will use that. Maybe I

will define what the value of this product is to be the temperature. So if I were to

replace this bath with a bath that was hotter than this product for the same amount

of gas, for the same wire, would be different. And I would get a different constant.

You maybe still want a number. So what you say is that the temperature of the

system in degrees Kelvin is 273 times 16. The limit of PV, as V goes to infinity of

your system, divided by the limit of the same thing at the triple point of water [? iced.

?]

So what does that mean? So you have this thing by which you want to measure

temperature. You put it in contact with the system-- could be a bath of water, could

be anything, yes? You go through this exercise and you calculate what this product

is. So you have this product. Then what you do is you take your system, and you

put it in a case that there are icebergs, and there's water, and there will be some

steam that will naturally evaporate. So you calculate the same product of PV in this

system that is the triple point of ice water, et cetera.

So you've measured one product appropriate to your system, one product

appropriate to this reference point that people have set, and then the ratio of those

things is going to give you the temperature of the system that you want to measure.
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This is clearly a very convoluted way of doing things, but it's a kind of rigorous

definition of what the ideal gas temperature scale is.

And it depends on this particular property of the diluted gases that the production of

PV is a constant. And again, this number is set by definition to be the temperature of

the triple point of the ice water gas. OK. Other questions?

All right. So this is now time to go through the first law. Now I'll write again this

statement, and then we'll start to discuss what it really means. So if the state of an

otherwise adiabatically isolated system is changed by work, the amount of work is

only function of initial and final points.

OK. So let's parse what that means and think about some particular example.

So let's imagine that we have isolated some system. So that it's not completely

boring, let's imagine that maybe it's a gas. So it has P and V as some set of

coordinates. Let's say that we put some kind of a spring or wire in it, so we can pull

on it. And we can ask how much we pulled, and what is the length of this system.

Maybe we even put a magnet in it, so we have magnetization that we can measure

if we were to pass some kind of a current and exert some kind of magnetic field. So

there's a whole bunch of coordinates that I'm completely familiar with from doing my

mechanics courses and electromagnetic courses. So I know various ways to do

mechanical work on this system.

So the system is otherwise isolated, because I don't really know how to handle this

concept of heat yet, but I certainly have no problems with mechanical work. And so

what I do is, I imagine that it is initially isolated. What I do is therefore, I have some--

in this case, six dimensional coordinate space. I'm will only draw two out of the six.

And I start some initial point, let's call it I. And then I start doing various types of

things to this. I could, for example, first pull on this, so that the length changes,

changes the current, put pressure so that the volume changes, et cetera. At the end

of this story, I'm at some other point that I will call F.
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Now I could have performed this change from the initial to the final state through

one set of changes taking place one after the other. But maybe I will change that,

and I will perform things in a different way. So there's path number 1. Then there's

path number 2. And there's huge number of different paths that I can, in principle,

take in order to change between the initial and final points by playing around with

the mechanical coordinates that describe the system.

I always ensure that, initially, I was in equilibrium, so I could know exactly what the

value of these parameters are. And finally, I wait until I have reached equilibrium. So

again, I know what this things are.

And I know what mechanical work is. And I can calculate along each one of these

paths, the net amount of work. The work is delivered in different ways-- through the

magnetic field, through the pulling of the spring, to the hydrostatic pressure, et

cetera-- but ultimately, when I add up all of the increments of the work, I will find that

all of them will give you the same delta W, irrespective of the path. OK.

Now this reminds me of the following, that if I'm rolling a ball on top of a hill. And

there is no friction. The amount of work that I do in order to take it from here to

here, irrespective of the path that I take on the hill, it really is a function of the

difference in potential energy between the final and initial points. So it's the same

type of thing.

Rather than moving these coordinates on a hill, I am moving them in this set of

parameters that thermodynamically describe the system, but I see the same thing

that I would see in the absence of friction for rolling a ball of the hill. And

immediately, I would deduce here that there is this potential energy, and the amount

of work that I have to do to roll this off the hill is the difference between the potential

energy between the two points.

So here, similarly, I would say that this delta W-- I define it to be the difference

between some function that is called the internal energy-- that depends on the final

set of coordinates. And there's a whole bunch of them. Think of them in some

pictorial context. Minus what you have initially.
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So in the same sense that the zeroth law allowed me to construct some function of

coordinates that was relevant to thermal equilibrium, the first law allows me to

define another function of coordinates, which is this internal energy. Of course, the

internal energy is the remnant of the energy that we know in mechanical systems to

be conserved quantity. And this is the statement of fact. So far, nothing surprising.

Now the real content of the first law is when we violate this condition. So essentially,

what we do is we replace the adiabatic walls that were surrounding our very same

system with walls that allow the exchange of heat. And I do exactly the same set of

changes. So maybe in one case I stretch this, and then I change the volume, et

cetera.

I do exactly the same set of changes that I did in this case, I try to repeat them in

the presence of diathermic walls, go from the same initial state to the same final

state. So the initial state is the same. The final state, I postulate to be the same. And

what is observed is that, in this case, the diathermic walls-- which allow heat

exchange-- that the amount of work that you have to do is not equal to the change

in internal energy. OK?

Now you really believe that energy is a good quantity. And so at this stage, you

make a postulate, if you like, it's the part of the corollary of the first law that allows

you to define exactly what heat is. So you're gradually defining all of the things that

were missing in the original formulation. You define this heat input to the system to

be the difference in energy that you expected, minus the amount of work that you

did in the presence of these walls. OK? Yes?

AUDIENCE: If we need the first law to the point of heat--

PROFESSOR: Yes.

AUDIENCE: --how did we define [? adiabatic ?] used in--

PROFESSOR: Right.

AUDIENCE: --first law and the zeroth law?
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PROFESSOR: As I said, it's an idealization. So it's, in the same sense that you can say well, how

would you define Newtonian mechanics that force is proportional to mass times

acceleration, what is the experimental evidence for that? You can only do that really

when you go to vacuum. So what you can do is you can gradually immerse your

particle into more and more dilute systems, and see what is the limiting behavior in

that sense.

You can try to do something similar here. You can imagine that you put your system

in some kind of a glass, double glass, container, and you gradually pump out all of

the gas this is between the two of them. So that, ultimately, you arrive at vacuum.

You also have to mirror things, so there is no radiation exchange, et cetera. So

gradually, you can try to experimentally reach that idealization and see what

happens.

But essentially, it is certainly correct that any statement that I make about adiabatic

walls is an isolation. But it's an isolation in the same sense that when you think

about the point particle in Newton's laws. OK?

Let's go a little bit further with this. So we have that in differential form, if I go from

one point in coordinate space that describes the system in equilibrium, where

energy's defined to a nearby point, I can calculate what the value of the change in

this energy function is. And I can say that there is a quantity, dE, that depends on a

whole bunch of coordinates that define the system.

And what the first law says is that if you try to operationally make this change from

one point to another point, you have to supply work through the system, or you

have to supply heat through the system. And we write them in this form.

And what this D and d bar-- and we will encounter this many times in future also and

define them better-- is that E is a function of state. It depends on where you are in

this parameter space. So in the same sense that maybe you have a function of x

and y, could be like x squared plus 3x y, I can define what dE is in terms of the x

and y. So that's where I have this quantity.
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But dW and dQ depend on precisely how this system was made to go from here to

here. And you can sort of go between how much contribution to dE comes from

here or from there, by certainly say, changing the properties of the walls from being

adiabatic to being diathermal, et cetera. So these quantities really, as opposed to

this quantity that depends on stage, these quantities depend on path, the conditions

by which you implement a particular change.

Now there is a desire, and it's very important for us to actually construct what this

function is. You want to, sort of, know what the energy function for, let's say, a

mechanical system is. In a potential, you want to know what the form of E is and

then you can do a lot of things with it. So how do we construct that for our

thermodynamics system?

Again, we can idealize things and go to processes that are so-called, quasi-static.

Which effectively means slow, or slow enough, to maintain equilibrium. And the

general idea is, suppose I wanted to calculate what the potential energy of a spring

is, or what the potential energy of a particle rolling on a hill is, well, one way that I

could do that is I could, let's say, pull on this sufficiently slowly, so that as I'm pulling

this by a certain amount, the spring does not start to vibrate. And so the force that

I'm exerting externally, is really the force that is internal to the spring.

If I really push it to rapidly, the spring will start to oscillate. There's really no relation

now between the external force that, let's say, is in uniform value and the internal

force that is oscillating. I don't want to do that because when that happens I don't

know where I am in this coordinate space. I want to do things sufficiently slowly so

that I go from here to here here-- every time I am on this plane that defines my

properties in equilibrium.

If I do that, then I can calculate the amount of work, and for the case of the spring, it

would be the force times extension. And so we generalize that, and we say that if I

have multiple ways of doing work on the system, there is the analog of the change

in length of the spring-- that is the displacement of the spring, if you like-- multiplied

by some generalized force that is conjugate to that.
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And indeed, mechanically, you would define the conjugate variables by

differentiation. So if you, for example, know the potential energy of the spring as a

function of its length, you take a derivative and you know what the force is. So this is

essentially writing that relationship for the case of the spring, generalize to multiple

coordinates. And we can make a table of what these displacements are and the

corresponding coordinates for the types of systems that we are likely to encounter.

So what is x? What is j? And the first thing that we mentioned was the case of the

wire. And for the wire we can-- the displacement of the length is important, and the

conjugate variable is the force with which you are pulling on this. In the first problem

set, you will deal-- in the first test preparation, you will deal with the case of film. And

for the film, what you do is you change the area, or if you have a balloon, you can

blow on the balloon, and the surface area of the balloon changes. And there's a

corresponding conjugate variable to that which is called the surface tension.

This is essentially the same thing, going from one dimension to two dimension. And

if I were to go one dimension higher, in the case of the gas, I have the volume of the

box. And I went through this just for the notation that the hydrostatic pressure of the

work is defined to be minus p w-- minus PBV. Sorry. pW is minus PVV, as opposed

to, say, the force of the spring, that is FDL. It's just, again, matter of definition and

how we define the sign of the pressure.

And for the case of the magnet that we also briefly mentioned, we have here MDB.

The one thing that you can see is the trend that all of these quantities, if you make

the size of your system twice as big, these quantities will get proportionately bigger.

So they're called extensive. Whereas the force and all the other quantities are

intensive.

So what we've established is that if we focus only on these types of transformations,

that don't include heat, we can relate the change in energy directly to dW. And the

dW, we can write as the sum over i Ji dxi.

Now in order to really get dE, in general, I have to add to this dQ. And so really the
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question that we have is, is there some kind of analog of dW that we can write down

for dQ? And if you think about it, if you have two springs that are in equilibrium, so

that the thing does not go one way or the other, the force exerted from one is the

same as the force exerted on the other. So in equilibrium, mechanical equilibrium

forces, pressures, et cetera, are generally the same.

And we've established that when you are in thermal equilibrium, temperatures are

the same. So we have a very good guess that we should really have temperature

appearing here. And then the question that we'll sort of build on is what is the

analog of the quantity that we have to put here.

Let me finish by telling you one other story that is related to the ideal gas. I said that

for every one of these laws, we can kind of come up with a peculiar feature that is

unique to the case of the ideal gas. And there is a property related to its energy that

we will shortly explore. But let me first say what the consequence of these kinds of

relations for measurable quantities that we can already try to deduce are.

So one thing that you can relate to heat, and properties of particular material, is the

heat capacity. So what you can do is you can take your material and put some

amount of heat into it. And ask, what is the corresponding change in temperature?

That would be the heat capacity.

Now this bar that we have over here, tells me that this quantity-- which we will

denote on C-- will depend on the path through which the heat is added to the

system. Because we've established that, depending on how you add heat to the

system, the change that you have in the coordinate space is going to be distinct

potentially. Actually, we establish the other way that for a given change in the

coordinate system, the amount of the Q depends on path, so they're kind of

equivalent statements.

So if I'm dealing with a gas, I can add the heat to it, at least among many other

possibilities, in two distinct ways. I can do this at constant volume or at constant

pressure. So if I think about the coordinate space of the gas, which is PV, and I start

from some particular point, I can either go along a path like this, or I can go along
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the path like this, depending on which one of these quantities I keep fixed. So then

in one case what I need is the change in Q at constant v, dT. In the other case, this

change in Q, a constant P, dT.

Now a consequence of the first law is that I know that dQ's are related to dE minus

dW. And dW for the gas is minus PdV. So I can write it in this fashion. Divided by dT,

and in one case, done at constant V, and in the other case, done at constant p.

The distinction between these two paths immediately becomes clear, because along

the paths where the volume is kept constant, there is no mechanical work that is

done along the this path, yes? And so this contribution is 0. And you have the result

that this is going to be related to the change in energy with temperature at constant

V, whereas here you have the change in energy, in temperature at constant P, plus

P dV by dT at constant P.

So there is some additional manipulations of derivatives that is involved, but rather

than looking at that in the general case, I will follow the consequence of that for a

particular example, which is ideal gas expansion.

So as this is an observation called Joule's experiment. I take a gas that is

adiabatically isolated from its environment. I connect it, also maintaining adiabatic

isolation to another chamber. And initially all of the gas is here, and this chamber is

empty. And then I remove this, and the gas goes and occupies both chambers.

Observation, there is some temperature initially in this system that I can measure.

Finally, I can measure the temperature of this system. And I find that the two

temperatures are the same.

In this example, since the whole thing was adiabatically isolated, that the Q is 0.

There is no mechanical work that done on the system, so delta W is also 0. And

since delta is the same, I conclude that delta E is the same for this two cases.

Now, in principle, E is a function of pressure and volume. And pressure and volume

certainly changed very much by going from that place to another place. OK, so let's

follow that. So E we said is a function of pressure and volume. Now since I know
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that for the ideal gas, the product of pressure and volume is temperature, I can

certainly exchange one of these variables for temperature. So I can write, let's say,

pressure to be proportional to temperature over volume. And then rewrite this as a

function of temperature and volume.

Now I know that in this process the volume changed, but the temperature did not

change. And therefore, the internal energy that did not change can only be a

function of temperature. So this Joule expansion experiment immediately tells me

that while internal energy, in principle, is a function of P and V, it is really a function

of the product of P and V, because the product of P and V, we established to be

proportional to temperature. OK?

So now if I go and look at these expressions, I can see that these, dE by dT, and

irrespective of V and P is the same thing, because E only depends on temperature.

And since V is-- we know that PV is proportional to temperature, a constant P, dV by

dT is the same as V over T. And so if I look at the difference between those two

expressions, what I find is that this part cancels. This part gives me the value of this

product, PV over T, which we said is a constant.

And it is certainly depends on the amount of gas that you have. And so you can pick

a particular amount of gas. You can experimentally verify this phenomenon, that the

difference of heat capacity along these two paths is a constant. That constant is the

same for the same amount of gas for different types of argon, krypton, et cetera.

And since it is proportional, eventually to the amount of matter, we will ultimately see

that it can be set to be the number of particles making up the gas in some constant

of proportionality that we will identify later in statistical physics is the Boltzmann

parameter, which is 1.43 times 10 to the minus 23 or whatever it is.

All of this depends partly on the definition that you made of temperature. What we

will do next time is to review all of this, because I've went through them a little bit

more rapidly, and try to identify what the conjugate variable is that we have to put

for temperature, so that we can write the form of dE in a more symmetric fashion.

Thank you.
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