
VII.G Superfluid He4 

Interesting examples of quantum fluids are provided by the isotopes of helium. The 

two electrons of He occupy the 1s orbital with opposite spins. The filled orbital makes 

this noble gas particularly inert. There is still a van der Waals attraction between two He 

atoms, but the interatomic potential has a shallow minimum of depth 9◦K at a separation 

of roughly 3˚ As the A. The weakness of this interaction makes He a powerful wetting agent. 

He atoms have a stronger attraction for practically all other molecules, they easily spread 

over the surface of any substance. Due to its light mass, the He atom undergoes large zero 

point fluctuations at T = 0. These fluctuations are sufficient to melt a solid phase, and 

thus He remains in a liquid state at ordinary pressures. Pressures of over 25 atmosphere 

are required to sufficiently localize the He atoms to result in a solid phase at T = 0. A 

remarkable property of the quantum liquid at zero temperature is that, unlike its classical 

counterpart, it has zero entropy. 

The lighter isotope of He3 has three nucleons and obeys fermi statistics. The liquid 

phase is very well described by a fermi gas of the type discussed in sec.VII.E. The inter­

actions between atoms do not significantly change the non-interacting picture described 

earlier. By contrast, the heavier isotope of He4 is a boson. Helium can be cooled down by 

a process of evaporation: Liquid helium is placed in an isolated container, in equilibrium 

with the gas phase at a finite vapor density. As the helium gas is pumped out, part of the 

liquid evaporates to take its place. The evaporation process is accompanied by the release 

of latent heat which cools the liquid. The boiling liquid is quite active and turbulent, just 

as a boiling pot of water. However, when the liquid is cooled down to below 2.2◦K, it 

suddenly becomes quiescent and the turbulence disappears. The liquids on the two sides 

of this phase transition are usually referred to as HeI and HeII. 

HeII has unusual hydrodynamic properties. It flows through the finest capillaries 

without any resistance. Consider an experiment that pushes HeII from one container to 

another through a small tube packed with powder. For ordinary fluids a finite pressure 

difference between the containers, proportional to viscosity, is necessary to maintain the 

flow. HeII flows even in the limit of zero pressure difference and acts as if it has zero 

viscosity. For this reason it is referred to as a superfluid. The superflow is accompanied 

by heating of the container that loses HeII and cooling of the container that accepts 

it; the mechano–caloric effect. Conversely, HeII acts to remove temperature differences 

by flowing away from hot regions. This is the basis of the fountain effect in which the 

superfluid spontaneously moves up a tube from a heated container. 
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In some other circumstances HeII behaves as a viscous fluid. A classical method 

for measuring the viscosity of a liquid is via torsional oscillators: A collection of closely 

spaced disks connected to a shaft is immersed in the fluid and made to oscillate. The 

period of oscillations is proportional to the moment of inertia, which is modified by the 

quantity of fluid that is dragged by the oscillator. This experiment was performed on HeII 

by Andronikashvilli who indeed found a finite viscous drag. Furthermore, the changes in 

the frequency of the oscillator with temperature indicate that the quantity of fluid that 

is dragged by the oscillator starts to decrease below the transition temperature. The 

measured normal density vanishes as T 0, approximately as T 4 .→
In 1938, Fritz London suggested that a good starting hypothesis is that the transition 

to the superfluid state is related to the Bose–Einstein condensation. This hypothesis can 

account for a number of observations: 

(1) The critical temperature of an ideal bose gas of volume v = A per particle is 46.2˚

obtained from eq.(VII.55) as 

Tc = 
h2 

( 
v ζ3/2 

)−2/3 ≈ 3.14◦K. (VII.68) 
2πmHekB 

The actual transition temperature of Tc ≈ 2.18◦K is not far from this value. 

(2) The origin of the transition has to be related to quantum statistics as He3, which is 

atomically similar, but a fermion, does not have a similar transition. (Actually He3 does 

become superfluid but at temperatures of only a few m◦K. This follows a pairing of He3 

atoms which changes their statistics.) 

(3) A bose condensate can account for the observed thermo–mechanical properties of 

HeII. The expression for pressure in eq.(VII.56) is only a function of temperature, and not 

density. As such, variations in pressure are accompanied by changes in temperature. This 

is also the reason for the absence of boiling activity in HeII. Bubbles nucleate and grow 

in a boiling liquid at local hot spots. In an ordinary fluid, variations in temperature relax 

to equilibrium only through the slow process of heat diffusion. By contrast if the local 

pressure is a function of temperature only, there will be increased pressure at a hot spot. 

The fluid flows in response to pressure gradients and removes them very rapidly (at the 

speed of sound in the medium). 

(4) Hydrodynamic behavior of HeII can be explained by Tisza’s two–fluid model , which 

postulates the coexistence of two components for T < TC : 

(a) A normal component of density ρn, moving with velocity ~vn, and having a finite 

entropy density sn. 
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(b) A superfluid component of density ρs, which flows without viscosity and with no 

vorticity (∇× ~us = 0), and has zero entropy density, ss = 0. 

In the super-leak experiments, it is the superfluid component that passes through, reduc­

ing the entropy and hence temperature. In the Andronikashilli experiment, the normal 

component sticks to the torsional oscillator and gets dragged by it. This experiment thus 

gives the ratio of ρn to ρs. 

There are, however, many important differences between superfluid helium and the 

ideal bose condensate: 

(1) Interactions certainly play an important role in the liquid state. The Bose–Einstein 

condensate has infinite compressibility, while HeII has a finite density, related to atomic 

volume, and is essentially incompressible. 

(2) It can be shown that, even at T = 0, the ideal bose condensate is not superfluid. This 

is because the low energy spectrum, E(~k) = h̄2k2/2m, admits too many excitations. Any 

external body moving through such a fluid can easily lose energy to it by exciting these 

modes, leading to a finite viscosity. 

(3) The detailed functional forms of the heat capacity and superfluid density are very 

different from their counterparts in the ideal bose condensate. The measured heat capacity 

diverges at the transition with a characteristic shape similar to a λ, and vanishes at low 

temperatures as T 3 (compared to T 3/2 for the ideal bose gas). The superfluid density 

obtained in the Andronikashvilli experiment vanishes as (Tc −T )2/3 at the transition, while 

the normal component vanishes as approximately T 4 as T 0 (compared to T 3/2 for the →
condensate density in eq.(VII.53)). Understanding the nature of the singular behavior 

close to Tc is beyond the scope of this discussion. The behavior close to zero temperature, 

however, suggests a different spectrum of low energy excitations. 

Based on the shape of the experimentally measured heat capacity, Landau suggested 

that the spectrum of low energy excitations is actually similar to that of phonons. This 

is a consequence of the interactions between the particles. The low energy excitations of 

a classical liquid are longitudinal sound waves. (In comparison, a solid admits three such 

excitations, two transverse and one longitudinal.) The correspondence principle suggests 

that quantized versions of such modes should also be present in a quantum liquid. As 

in the case of phonons, a linear spectrum of excitations leads to a heat capacity that 

vanishes as T 3 . The speed of sound waves can be computed from the coefficient of the 

T 3 dependence as v ≈ 240ms−1 . A further anomaly in heat capacity can be explained by 

assuming that the spectrum of excitations bends down and has a minimum in the vicinity 
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A−1of a wavenumber k0 ≈ 2˚ . The excitations in the vicinity of this minimum are referred 

to as rotons, and have an energy 

h2¯E roton(~k) = Δ + 
2µ 

(k − k0)
2 , (VII.69) 

with Δ ≈ 8.6◦K, and µ ≈ 0.16mHe. The spectrum postulated by Landau was confirmed 

directly by neutron scattering measurements in the 1950’s. 
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