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VII.E The Degenerate Fermi Gas 

At zero temperature, the fermi occupation number, 

1 〈n~k〉− = 
β 
( 
E (k)−µ 

) , (VII.40) 
e + 1 

is one for E(~k) < µ, and zero otherwise. The limiting value of µ at zero temperature is 

called the fermi energy, EF , and all one-particle states of energy less than EF are occupied, 

forming a fermi sea. For the ideal gas with E(~k) = h̄2k2/(2m), there is a corresponding 

fermi wavenumber kF , calculated from 

N = 
∑ 

(2s + 1) = gV 
k<kF 

(2

d

π

3~k 
)3 

= g 
6

V

π2
kF

3 . (VII.41) 

|~k|≤kF 

In terms of the density n = N/V , 

( )1/3 
h2k2 h2 ( )2/3

6π2n ¯ F ¯ 6π2n 
kF = 

g
, = ⇒ EF (n) =

2m 
=

2m g 
. (VII.42) 

Note that while in a classical treatment the ideal gas has a large density of states at 

T = 0 (from ΩClassical = V N/N !), the quantum fermi gas has a unique ground state with 

Ω = 1. Once the one-particle momenta are specified (all ~k for |~k| < kF ), there is only one 

anti-symmetrized state, as constructed in eq.(VII.7). 

To see how the fermi sea is modified at small temperatures, we need the behavior of 

f−(z) for large z which, after integration by parts, is m

f−(z) =
1 
∫ ∞ 

dx xm d −1 
.m m! 0 dx z−1ex + 1 

Since the fermi occupation number changes abruptly from one to zero, its derivative in the 

above equation is sharply peaked. We can expand around this peak by setting x = ln z + t, 

and extending the range of integration to −∞ < t < +∞, as 

f−(z) ≈ 1 
∫ ∞ 

dt (ln z + t)
m d −1 

m m! −∞ dt et + 1 

=
1 
∫ ∞ 

dt 
∞ 
( m ) 

tα (ln z)
m−α d 

( −1 
) 

(VII.43) m! −∞ α dt et + 1 
α=0 

=
(ln z)

m ∞ 
m! 

(ln z)
−α 
∫ ∞ 

dt tα d 
( −1 

) 

. 
m! α!(m − α)! dt et + 1 

α=0 −∞ 
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Using the (anti-) symmetry of the integrand under t → −t, and un-doing the integration 

by parts yields, 

 
∫ ( )  0 for α odd,

1 ∞ 

dt tα d −1
= 
 

tα−1 

α! −∞ dt et + 1  2 
∫ ∞ 

dt = 2fα 
−(1) for α even. 

 
(α − 1)! et + 1 0 

Inserting the above into eq.(VII.43), and using tabulated values for the integrals fα 
−(1), 

leads to the Sommerfeld expansion, 

lim f−(z) =
(ln z)

m even 

2fα 
−(1) 

m! 
(ln z)−α 

z→∞ 
m m! (m − α)! 

α=0 

(ln z)m 
[ 

π2 m(m − 1) 7π4 m(m − 1)(m − 2)(m − 3) 
] 

= 1 + + + . 
m! 6 (ln z)2 360 (ln z)4 

· · · 
(VII.44) 

In the degenerate limit, the density and chemical potential are related by 

nλ3 

= f− (z) =
(ln z)3/2 

[ 

1 + 
π2 3 1 

(ln z)−2 + 

] 

(VII.45) 
g 3/2 (3/2)! 6 2 2 

· · · ≫ 1. 

The lowest order result reproduces the expression in eq.(VII.41) for the fermi energy, 

[ ]2/3 ( )2/3
3 nλ3 βh̄2 6π2n 

lim ln z = = = . 
T→0 4

√
π g 2m g 

βEF

Inserting the zero temperature limit into eq.(VII.45) gives the first order correction, 

[ 
π2 

( )2 
]−2/3 [ 

π2 
( )2 

] 
kBT kBT 

ln z = 1 + + = + . (VII.46) βEF 
8 EF 

· · · βEF 1 −
12 EF 

· · · 

The appropriate dimensionless expansion parameter is (kBT/EF ). Note that the fermion 

chemical potential µ = kBT ln z, is positive at low temperatures, and negative at high 

temperatures (from eq.(VII.38)). It changes sign at a temperature proportional to EF /kB. 

The low temperature expansion for the pressure is 

βP = 
g
f− (z) = 

g (ln z)5/2 
[ 

1 + 
π2 5 3 

(ln z)−2 +

] 

λ3 5/2 λ3 (5/2)! 6 2 2 
· · · 

g 8(βEF )5/2 5 π2 
( 
kBT 

)2 
5π2 

( 
kBT 

)2 

= 
λ3 15

√
π 

1 −
2 12 EF 

+ · · · 1 + 
8 EF 

+ · · · (VII.47) 

( )2 

= PF 1 + 
5 
π2 kBT 

+ ,
12 EF 

· · · 
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where PF = (2/5)nEF if the fermi pressure. Unlike its classical counterpart, the fermi gas 

at zero temperature has finite pressure and internal energy. 

The low temperature expansion for the internal energy is obtained easily from 

eq.(VII.47) using 

( )2
E 3 3 5 T 

= P = nkBTF 1 + π2 + , (VII.48) 
V 2 5 12 TF 

· · · 

where we have introduced the fermi temperature TF = EF /kB. Eq.(VII.48) leads to a low 

temperature heat capacity, 

dE π2 
( 
T 
) ( 

T 
)2 

CV = 
dT 

=
2 
NkB 

TF 
+ O 

TF 
. (VII.49) 

The linear vanishing of the heat capacity as T 0 is a general feature of a fermi gas, valid →
in all dimensions. It has the following simple physical interpretation: The probability 

of occupying single-particle states, eq.(VII.40), is very close to a step function at small 

temperatures. Only particles within a distance of approximately kBT of the fermi energy 

can be thermally excited. This represents only a small fraction T/TF , of the total number 

of electrons. Each excited particle gains an energy of the order of kBT , leading to a 

change in the internal energy of approximately kBTN(T/TF ). Hence the heat capacity 

is given by CV = dE/dT ∼ NkBT/TF . This conclusion is also valid for an interacting 

fermi gas. The fact that only a small number, N(T/TF ), of fermions are excited at small 

temperatures accounts for many interesting properties of fermi gases. For example, the 

magnetic susceptibility of a classical gas of N non-interacting particles of magnetic moment 

µB follows the Curie law, χ ∝ Nµ2 /(kBT ). Since quantum mechanically, only a fraction B

of spins contributes at low temperatures, the low temperature susceptibility saturates to a 

(Pauli) value of χ ∝ Nµ2 /(kBTF ). (See review problems for the details of this calculation.) B
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