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∏ 

∏ 

∏ 

[ ] 
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VII.B Canonical Formulation 

Using the states constructed in the previous section, we can calculate the canonical 

density matrix for non-interacting identical particles. In the coordinate representation we 

have 

′ 
′ �{~x ′ }|ρ|{~x}�η = 

∑∑ 
ηP ηP �{~x ′ }|P ′ {~k}�ρ({~k})�P {~k}|{~x}� 

N

1 

η 
, (VII.11) 

{�k} P,P ′ 

where ρ({~k}) = exp −β 
∑N 

h̄2kα
2/2m /ZN . The sum, 

∑ 
{
′ 
� � � , is restricted to α=1 k1,k2,···,kN}

ensure that each identical particle state appears once and only once. In both the bosonic 

and fermionic subspaces, the set of occupation numbers {n�k} uniquely identify a state. 

We can, however, remove this restriction from eq.(VII.11), if we divide by the resulting 

over-counting factor (for bosons) of N !/( �k n�k!), i.e., 

′ 
∑ ∑ 

� n� !k k= . 
N ! 

{�k} {�k} 

(Note that for fermions, the (−1)P factors cancel out the contributions from cases where 

any n�k is larger than one.) Therefore, 

′ 
∑ 

� n� ! 1 
x ρ = k k

∏�{~ }| |{~x}�
{�k} 

N ! 
· 
N ! �k n�k! 

· 

( ) (VII.12) 
′ 

∑ k2¯∑ ηP

Z

η

N

P 

exp −β 
N 

h

2

2

m 
α �{~x ′ }|P ′ {~k}��P {~k}|{~x}�. 

P,P ′ α=1 

In the limit of large volume, the sums over {~k} can be replaced by integrals, and using the 

plane wave representation of wavefunctions, we have 

∫ N ( ) 
1 ∑ 

′ 
∏ V d3~kα βh̄2k2 

�{~x ′ }|ρ|{~x}� = 
ZN (N !)2 

ηP ηP 

(2π)3 
exp − 

2m 
α 

P,P ′ α=1 


∑N 
 (VII.13) 

′ 
exp −i α=1(

~kPα ~xα − ~kP ′ α ~x α)  · · 
×
 V N 

 
. 

We can order the sum in the exponent by focusing on a particular ~k-vector. Since 

f(Pα)g(α) = f(β)g(P −1β), where β = Pα and α = P −1β, we obtain α β 

N ∫ ( ) 
1 ∑ 

′ 
∏ d3~kα −i�kα · �x −�x ′ −βh̄2k2 /2m 

P α�{~x ′ }|ρ|{~x}� = 
ZN (N !)2 

ηP ηP 

(2π)3
e P−1α ′

−1 α . 
P,P ′ α=1 

(VII.14) 
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[ ] 
( 

∑ 

∑ ∑ 

∏ 

∏ ∑ ∑ 

∏ 

The gaussian integrals in the square brackets are equal to


1 π ′ 
)2 

λ3 
exp −

λ2 
~xP−1α − ~x 

P ′
−1 

α 
. 

Setting β = P −1α in eq.(VII.14) gives 

  
N 

′ 1 ∑ 
′ π ∑( 

′ 
)2 

�{~x }|ρ|{~x}� = 
ZNλ3N (N !)2 

ηP ηP exp −
λ2 

~xβ − ~x 
P Pβ 

 . (VII.15) 
′
−1 

P,P ′ β=1 

Finally, we set Q = P ′−1P , and use the results ηP = ηP−1 
, and ηQ = ηP ′−1P = ηP ′ ηP , to 

get (after performing P = N !) 

  
N 

�{~x ′ }|ρ|{~x}� = 
ZNλ

1 
3NN ! 

ηQ exp −
λ

π 
2 

( 
~xβ − ~x ′ Qβ 

)2 
 . (VII.16) 

Q β=1 

The canonical partition function, ZN , is obtained from the normalization condition 

∫ N 

tr(ρ) = 1, = ⇒ d3~xα �{~x}|ρ|{~x}� = 1, 
α=1 

as 
  

∫ N N 

ZN = 
N !λ

1 
3N 

d3~xα ηQ exp −
λ

π 
2 

(~xβ − ~xQβ)
2 
 . (VII.17) 

α=1 Q β=1 

The quantum partition function thus involves a sum over N ! possible permutations. The 

classical result ZN = 
( 
V/λ3

)N 
/N !, is obtained from the term corresponding to no particle 

exchange, Q ≡ 1. The division by N ! finally justifies the factor that was (somewhat 

artificially) introduces in classical statistical mechanics to deal with the phase space of 

identical particles. However, this classical result is only valid at very high temperature 

and is modified by the quantum corrections coming from the remaining permutations. 

As any permutation involves a product of factors exp[−π(~x1 − ~x2)
2/λ2], its contributions 

vanishes as λ 0 for T → ∞.→
The lowest order correction comes from the simplest permutation which is the ex­

change of two particles. The exchange of particles 1 and 2 is accompanied by a factor of 

η exp[−2π(~x1−~x2)
2/λ2]. As each of the possible N(N −1)/2 pairwise exchanges gives the 

same contribution to ZN , we get 

∫ N { [ ] } 

ZN = 
N !λ

1 
3N 

d3~xα 1 + 
N(N 

2 

− 1) 
η exp − 2

λ

π 
2 
(~x1 − ~x2)

2 + · · · . (VII.18) 
α=1 
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[ ] 
∫ 

[ ] 

∣ 

For any α ≥ 2, 
∫ 
d3~xα = V ; in the remaining two integrations we can use the relative, 

~r12 = ~x2 − ~x1, and center of mass coordinates to get 

−2π�r 2 
12ZN =

1 
V N 1 + 

N(N − 1) 
η d3~r12 e 

/λ2 

+ 
N !λ3N 2V 

· · · 
(
√ )3 

1 
( 
V 
)N 

 
N(N − 1) 2πλ2 

 
(VII.19) 

= 1 + η +  . 
N ! λ3 2V 

· 
4π 

· · · 

From the corresponding free energy, 

e V kBTN
2 λ3 

F = −kBT lnZN = −NkBT ln 
λ3 

· 
N 

− 
2V 

· 
23/2 

η + · · · , (VII.20) 

the gas pressure is computed as 

∂F ∣
∣ 

NkBT N2kBT λ3 
[ 

ηλ3 
] 

P = −
∂V ∣ 

= 
V 

− 
V 2 

· 
25/2 

η + · · · = nkBT 1 −
25/2 

n + · · · . (VII.21) 
T 

Note that the first quantum correction is equivalent to a second virial coefficient of 

ηλ3 

B2 = . (VII.22) −
25/2 

The resulting correction to pressure is negative for bosons, and positive for fermions. In the 

classical formulation, a second virial coefficient was obtained from a two-body interaction. 

The classical potential V(~r ) that leads to the second virial coefficient in eq.(VII.22) is 

obtained from 

f(~r ) = e −βV(�r ) −
[ 

1 = ηe−2π�r 2/λ

] 

2 

, = ⇒ 

V(~r ) = −kBT ln 1 + ηe−2π�r 2/λ2 ≈ −kBTη e
−2π�r 2/λ2 

. 
(VII.23) 

(The final approximation corresponds to high temperatures, where only the first correc­

tion is important). Thus the effects of quantum statistics at high temperatures are ap­

proximately equivalent to introducing an interaction between particles. The interaction is 

attractive for bosons, repulsive for fermions, and operates over distances of the order of 

the thermal wavelength λ. 
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VII.C Grand Canonical Formulation


Calculating the partition function by performing all the sums in eq.(VII.17) is a 

formidable task. Alternatively, we can compute ZN in the energy basis as 

′ 
[ 

N 
] 

′ 
  

( ) 
∑ ∑ ∑ ∑ 

ZN = tr e −βH = exp −β E(~kα) = exp −β E(~k)n(~k) . (VII.24) 
{n~k{�kα} α=1 } �k 

These sums are still difficult to perform due to the restrictions of symmetry on the allowed 

values of ~k or {n�k}: The occupation numbers {n�k} are restricted to �k n�k = N , and 

n�k = 0, 1, 2, for bosons, while n�k = 0 or 1 for fermions. As usual, the first constraint · · · 
can be removed by looking at the grand partition function, 

  
∞ ′ 

~k

Qη(T, µ) = eβµN exp −β E(~k)n�k 



N=0 {n } �k
 (VII.25)

η 

~k

= exp −β 
( 
E(~k) − µ 

) 
n�k . 

{n } �k 

The sums over {n�k} can now be performed independently for each ~k, subject to the re­

strictions on occupation numbers imposed by particle symmetry. 

For fermions, n� = 0 or 1, and • k 

Q− = 1 + exp 
( 
βµ − βE(~k) 

) 
. (VII.26) 

�k 

For bosons, n� = 0, 1, 2, , and summing the geometric series gives • k · · ·
∏

[ ]−1 

Q+ = 1 − exp 
( 
βµ − βE(~k) 

) 
. (VII.27) 

�k 

The results for both cases can be presented simultaneously as 

lnQη = −η ln 1 − η exp 
( 
βµ − βE(~k) 

) 
, (VII.28) 

�k 

with η = −1 for fermions, and η = +1 for bosons. 

In the grand canonical formulation, different one-particle states are occupied indepen­

dently, with a joint probability 

pη 

({ 
n(~k) 

}) 
=

1 ∏ 
exp 

[ 
−β 
( 
E(~k) − µ 

) 
n�k 

] 
. (VII.29) Qη

�k 
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∫ 

∫ 

∫ 

The average occupation number of a state of energy E(~k) is given by 

∂ 
( 

lnQη 
) =

1 
, (VII.30) �n�k�η = −

∂ βE(~k) z−1eβE (�k) − η 

where z = exp(βµ). The average values of the particle number and internal energy are 

then given by 


∑ ∑ 1 
 Nη = 
 
 �n�k�η = 

−1 k) 
 e 

�k �k 
z βE(� − η 

 E(~k) 
. (VII.31) 

 
 Eη = k)�n� E(~
 k�η = 

�
z−1eβE (�k) − η

�k k 

VII.D Non-relativistic Gas 

Quantum particles are further characterized by a spin s. In the absence of a magnetic 

field different spin states have the same energy, and a spin degeneracy factor, g = 2s + 1, 

multiplies eqs.(VII.28)–(VII.31). In particular, for a non-relativistic gas in three dimen­

sions (E(~k) = h̄2k2/2m, and �k → V 
∫ 
d3~k/(2π)3) these equations reduce to 

 [ ( )] 


 


 
βPη =

lnQη 
= ηg 

(2

d

π

3~k 
)3 

ln 1 − ηz exp − βh̄
2k2 

, 
 V 2m 
 
 
 
 
 Nη d3~k 1 
 

nη ≡
V 

= g 
(2π)3 z−1 exp 

( 
βh̄2k2 

) , 
(VII.32) 

 2m 
− η 

 
 
 
 
 d3~ h2k2 
 Eη k ¯ 1 
 
 = g ( ) . 
 εη ≡
 V (2π)3 2m z−1 exp βh̄2k2 − η


2m


To simplify these equations, we change variables to x = βh̄2k2/(2m), so that 

√
2mkBT 2π1/2 π1/2 

k = x 1/2 = x 1/2 , = dk = x −1/2dx. 
¯ λ λh 

⇒ 

Substituting into eqs.(VII.32) gives 

 ∫ ∞



 βPη = 

g 4π3/2 
( 
1 − ηze−x 

) 
 dx x1/2 ln 
 − η 

2π2 λ3 
 0 
 
 


∫ ∞ 
 
 g 4 dx x3/2 
 
 
 = 

λ3 3
√
π z−1ex 

, (integration by parts) 
0 − η 

(VII.33) 
 
 g 2 ∞ dx x1/2 
 nη = , 
 λ3 −1ex 
 

√
π z − η 

 0 
 
 ∫ ∞ 


 g 2 dx x3/2 
 
 βεη = 

λ3 
√
π 0 z−1ex − η

. 
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∑ 

We now define two sets of functions by 

1 ∞ dx xm−1 

fη (z) = . (VII.34) m (m − 1)! z−1ex − η0 

For non-integer arguments, the function m! ≡ Γ(m + 1) is defined by the integral 
∫ ∞ −x 
0 
dx xme . In particular, from this definition it follows that (1/2)! = 

√
π/2, and 

(3/2)! = (3/2)
√
π/2. Eqs.(VII.33) now take the simple form 

 g η 
 βPη = f (z), 
 5/2
 λ3
 
 g η nη = 

λ3
f3/2(z), (VII.35) 

 
 
 3 
 εη = Pη . 

2 

These results completely describe the thermodynamics of ideal quantum gases as a function 

of z. To find the equation of state Pη(nη, T ), we need to solve for z in terms of density. 

This requires knowledge of the behavior of the functions fη (z). m

The high temperature, low density (non-degenerate) limit will be examined first. In 

this limit, z is small, and 

1 
∫ ∞ dx xm−1 1 ∞ 

( ) ( )−1 
fη −x(z) =

(m − 1)! 0 z−1ex − η 
=

(m − 1)! 0 

dx xm−1 ze 1 − ηze−x 
m

∫ ∞ ∞ 

=
1 

dx xm−1 
( 
ze −x 

)α 
ηα+1


(m − 1)!
 0 α=1 

= 

∞ 

ηα+1 z α 1 
∫ ∞ 

dx xm−1 e −αx


(m − 1)!

α=1 0


∞ α 2 3 4


= 
∑ 

ηα+1 z = z + η
z

+ 
z

+ η
z

+ .

αm 2m 3m 4m 

· · · 
α=1 

(VII.36) 

We thus find (self-consistently) that fη (z), and hence nη(z) and Pη(z), are indeed small m

as z 0. Eqs.(VII.35) in this limit give, →

 
nηλ

3 
η z2 z3 z4 



 = f (z) = z + η + + η + ,
 

g 3/2 23/2 33/2 43/2 
· · · 

 βPηλ
3 z2 z3 z4 

(VII.37) 
 η 
 

g 
= f5/2(z) = z + η 

25/2 
+

35/2 
+ η 

45/2 
+ .· · · 
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The first of the above equations can be solved perturbatively, by the recursive procedure 

of substituting the solution up to a lower order, as 

nηλ
3 z2 z3


z =

g 

− η 
23/2 

−
33/2 

− · · ·

( ) ( )2

nηλ

3 η nηλ
3 

= (VII.38) 
g 

−
23/2 g 

− · · · 
( ) ( )2 ( )( )3 
nηλ

3 η nηλ
3 1 1 nηλ

3 

= + . 
g 

−
23/2 g 4 

−
33/2 g 

− · · · 

Substituting this solution into the second leads to 

βPηλ
3 

( 
nηλ

3
) 

η 
( 
nηλ

3
)2 ( 

1 1 
)( 

nηλ
3
)3 

23/2 33/2g 
= 

g 
− 

g 
+

4 
− 

g 

η 
( 
nηλ

3
)2 

1 
( 
nηλ

3
)3 

1 
( 
nηλ

3
)3 

+ 
g 

−
8 g 

+ 
g 

+ · · · . 
25/2 35/2 

The pressure of the quantum gas can thus be obtained from the virial expansion, 

η 
( 
nηλ

3
) ( 

1 2 
)( 

nηλ
3
)2 

Pη = nηkBT 1 −
25/2 g 

+
8 
−

35/2 g 
+ · · · . (VII.39) 

The second virial coefficient B2 = −ηλ3/(25/2g), agrees with eq.(VII.22) computed in 

the canonical ensemble for g = 1. The natural (dimensionless) expansion parameter is 

nηλ
3/g, and quantum mechanical effects become important when nηλ

3 ≥ g; the quantum 

degenerate limit. The behavior of fermi and bose gases is very different in this degenerate 

limit of low temperatures and high densities, and the two cases will be discussed separately 

in the following sections. 
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