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VI.D Quantum microstates 

In the previous sections we indicated several failures of classical statistical mechanics, 

which were heuristically remedied by assuming quantized energy levels, while still calculat­

ing thermodynamic quantities from a partition sum Z = exp (−βEn). This implicitly n 

assumes that the micro-states of a quantum system are specified by its discretized energy 

levels, and governed by a probability distribution similar to a Boltzmann weight. This 

‘analogy’ to classical statistical mechanics needs to be justified. Furthermore, quantum 

mechanics is itself inherently probabilistic, with uncertainties unrelated to those that lead 

to probabilities in statistical mechanics. Here, we shall construct a quantum formulation 

of statistical mechanics by closely following the steps that lead to the classical formulation. 

Micro-states of a classical system of particles are described by the set of coordinates 

and conjugate momenta {p~i, ~qi}; i.e. by a point in the 6N–dimensional phase space. In 

quantum mechanics {~qi} and {p~i} are not independent observables. Instead: 

• The (micro-) state of a quantum system is completely specified by a unit vector |Ψ〉, which 

belongs to an infinite dimensional Hilbert space. The vector |Ψ〉 can be written in terms 

of its components 〈n|Ψ〉, which are complex numbers, along a suitable set of ortho-normal 

basis vectors |n〉. In the convenient notation introduced by Dirac, this decomposition is 

written as 

|Ψ〉 = 〈n|Ψ〉 |n〉. (VI.62) 
n 

The most familiar basis is that of coordinates | {~qi}〉, and 〈{q~i} |Ψ〉 ≡ Ψ(~q1, . . . , ~qN ) is the 

wave-function. The normalization condition is 

∗ 〈Ψ|Ψ〉 = 
n 

〈Ψ|n〉 〈n|Ψ〉 = 1, where 〈Ψ|n〉 ≡ 〈n|Ψ〉 . (VI.63) 

For example, in the coordinate basis, we must require 

∫ N 

〈Ψ|Ψ〉 = ddq~i |Ψ(~q1, . . . , ~qN )|2 = 1. (VI.64) 
i=1 

• Classically, various observables are functions O({p~i, ~qi}), defined in phase space. In 

quantum mechanics, these functions are replaced by Hermitian matrices (operators) in 

Hilbert space, obtained by substituting operators for {~qi} and {p~i} in the classical ex­

pression (after proper symmetrization of products, e.g. pq (pq + qp)/2). These basic → 
operators satisfy the commutation relations, 

h̄ 
[ pj , qk ] ≡ pjqk − qkpj = δj,k . (VI.65) 

i 
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For example, in the coordinate basis | {q~i}〉, the momentum operators are 

¯ ∂h 
pj = . (VI.66) 

i ∂qj 

(Note that classical Poisson brackets satisfy {pj , qk} = −δj,k. Quite generally, quantum 

commutation relations are obtained by multiplying the corresponding classical Poisson 

brackets by ih̄.) 

• Unlike in classical mechanics, the value of an operator O is not uniquely determined for 

a particular micro-state. It is instead a random variable, whose average in a state |Ψ〉 is 

given by 

〈O〉 ≡ 〈Ψ|O|Ψ〉 ≡ 〈Ψ|m〉〈m|O|n〉〈n|Ψ〉. (VI.67) 
m,n 

For example, 
∫ N 

〈U({~q })〉 = d3q~iΨ ∗ U({~q })Ψ, and, 
i=1 

∫ N ({ }) 
∏ h̄ d 〈K({p~})〉 = d3q~iΨ ∗ K 

i d~q 
Ψ. 

i=1 

To ensure that the expectation value 〈O〉 is real, the operators O must be Hermitian, i.e. 

satisfy 

† † ∗ O = O, where 〈m|O |n〉 ≡ 〈n|O|m〉 . (VI.68) 

When replacing p~ and q~ in a classical operator O({p~i, ~qi}) by corresponding matrices, 

proper symmetrization of various products is necessary to ensure the above Hermiticity. 

Time evolution of micro-states is governed by the Hamiltonian H({p~i, ~qi}). A clas­

sical microstate evolves according to Hamilton’s equations of motion, while in quantum 

mechanics the state vector changes in time according to 

∂ 
ih̄
∂t 

|Ψ(t)〉 = H|Ψ(t)〉. (VI.69) 

A convenient basis is one that diagonalizes the matrix H. The energy eigen-states satisfy 

H|n〉 = En|n〉, where En are the eigen-energies. Substituting |Ψ(t)〉 = n〈n|Ψ(t)〉|n〉 in 

eq.(VI.69), and taking advantage of the ortho-normality condition 〈m|n〉 = δm,n, yields 

ih̄
dt

d 〈n|Ψ(t)〉 = En〈n|Ψ(t)〉, = ⇒ 〈n|Ψ(t)〉 = exp − iE
h̄ 
nt 〈n|Ψ(0)〉. (VI.70) 
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The quantum states at two different times can be related by a time evolution operator, as 

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉, (VI.71) 

which satisfies i¯ = condition U(t0, t0) = 1. If Hh∂tU(t, t0) HU(t, t0), with the boundary 

is independent of t, we can solve these equations to yield 

i 
U(t, t0) = exp . (VI.72) −

h̄ 
H(t − t0) 

VI.E Quantum macrostates 

Macro-states of the system depend on only a few thermodynamic functions. We can 

form an ensemble of a large number N , of micro-states µα, corresponding to a given macro­

state. The different micro-states occur with probabilities pα. (For example pα = 1/N in 

the absence of any other information.) When we no longer have exact knowledge of the 

microstate, it is said to be in a mixed state. 

Classically, ensemble averages are calculated from 

∫ N 

O({p~i, ~qi})t = pαO 
( 
µα(t) 

) 
= d3~pid

3q~iO ({p~i, ~qi}) ρ ({p~i, ~qi}, t) , (VI.73) 
α i=1 

where 
N 

ρ ({p~i, ~qi}, t) = pα δ3 (q~i − ~qi(t)α) δ3 (p~i − p~i(t)α) , (VI.74) 
α i=1 

is the ensemble density. 

Similarly, a mixed quantum state is obtained from a set of possible states {|ψα〉}, with 

probabilities {pα}. The ensemble average of the quantum mechanical expectation value in 

eq.(VI.67) is then given by 

= =〈O〉
α 

pα〈Ψα|O|Ψα〉
α,m,n 

pα〈Ψα|m〉〈n|Ψα〉〈m|O|n〉 
∑ (VI.75) 

= 〈n|ρ|m〉〈m|O|n〉 = tr(ρO), 
m,n 

where we have introduced a basis {|n〉}, and defined the density matrix 

〈n|ρ(t)|m〉 ≡ 
α 

pα〈n|Ψα(t)〉〈Ψα(t)|m〉. (VI.76) 
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Classically, the probability (density) ρ(t) is a function defined on phase space. As all 

operators in phase space, it is replaced by a matrix in quantum mechanics. Stripped of 

the choice of basis, the density matrix is 

ρ(t) = pα|Ψα(t)〉〈Ψα(t)|. (VI.77) 
α 

Clearly, ρ corresponds to a pure state if and only if ρ2 = ρ. 

The density matrix satisfies the following properties: 

(i) Normalization: Since each |Ψα〉 is normalized to unity, 

〈1〉 = tr(ρ) = 
n 

〈n|ρ|n〉 = 
α,n 

pα|〈n|Ψα〉|2 = 
α 

pα = 1. (VI.78) 

(ii) Hermiticity: The density matrix is Hermitian, i.e. ρ† = ρ, since 

〈m|ρ†|n〉 = 〈n|ρ|m〉 ∗ = 
α 

pα〈Ψα|m〉〈n|Ψα〉 = 〈n|ρ|m〉, (VI.79) 

ensuring that the averages in eq.(VI.76) are real numbers. 

(iii) Positivity: For any |Φ〉, 

〈Φ|ρ|Φ〉 = 
α 

pα〈Φ|Ψα〉〈Ψα|Φ〉 = 
α 

pα|〈Φ|Ψα〉|2 ≥ 0. (VI.80) 

Thus ρ is positive definite, implying that all its eigenvalues must be positive. 

• Liouville’s theorem governs the time evolution of the classical density as 

dρ ∂ρ 
= 
∂t 

− {H, ρ} = 0. (VI.81) 
dt 

It is most convenient to examine the evolution of the quantum density matrix in the basis 

of energy eigen-states, where according to eq.(VI.70) 

∂ ∂ 
ih̄ ρ(t) = ih̄
∂t

〈n| |m〉
∂t 

α 

pα〈n|Ψα(t)〉〈Ψα(t)|m〉 

= 
∑ 

)〈n m〉] (VI.82) pα [(En − Em |Ψα〉〈Ψα|
α 

= 〈n|(Hρ − ρH)|m〉. 

The final result is a tensorial identity, and hence, independent of the choice of basis 

∂ 
ih̄ ρ = [H, ρ]. (VI.83) 
∂t 
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Equilibrium requires time independent averages, and suggests ∂ρ/∂t = 0. This con­

dition is satisfied in both eqs.(VI.81) and (VI.83) by choosing ρ = ρ(H). (As discussed 

in chapter III, ρ may also depend on conserved quantities such that [H, L] = 0.) Vari­

ous equilibrium quantum density matrices can now be constructed in analogy to classical 

statistical mechanics. 

• Microcanonical ensemble: As the internal energy has a fixed value E, a density matrix 

that includes this constraint is 

ρ(E) = 
δ(H− E) 

. (VI.84) 
Ω(E) 

In particular, in the basis of energy eigen-states, 


 1 if En = E, and m = n,


∑ Ω 
〈n|ρ|m〉 = pα〈n|Ψα〉〈Ψα|m〉 = 

 
(VI.85) 

α 0 if En =6 E, or m =6 n. 

The first condition states that only eigen-states of the correct energy can appear in the 

quantum wave-function, and that (for pα = 1/N ) such states on average have the same 

amplitude, |〈n|Ψ〉|2 = 1/Ω. This is equivalent to the classical postulate of equal a priori 

equilibrium probabilities. The second (additional) condition states that the Ω eigen-states 

of energy E are combined in a typical micro-state with independent random phases. (Note 

that the normalization condition tr ρ = 1, implies that Ω(E) = δ(E−En) is the number n 

of eigen-states of H with energy E.) 

• Canonical ensemble: A fixed temperature T = 1/kBβ, can be achieved by putting the 

system in contact with a reservoir. By considering the combined system, the canonical 

density matrix is obtained as 

ρ(β) = 
exp (−βH) 

. (VI.86) 
Z(β) 

The normalization condition tr(ρ) = 1, leads to the quantum partition function 

Z = tr e −βH = e −βEn . (VI.87) 
n 

The final sum is over the (discrete) energy levels of H, and justifies the calculations per­

formed in the previous sections. 

• Grand Canonical Ensemble: The number of particles N , is no longer fixed. Quantum 

micro-states with indefinite particle number span a so called Fock space. The density 

matrix is 

∞ 
e

ρ(β, µ) = 
−βH+βµN 

, where Q(β, µ) = tr 
( 
e −βH+βµN 

) 
= 
∑ 

eβµNZN (β). (VI.88) 
N=0 

Q 
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Example: Consider a single particle in a quantum canonical ensemble in a box of 

volume V . The energy eigen-states of the Hamiltonian 

p~ 2 h̄2
2H1 =

2m 
= −

2m 
∇ , (in coordinate basis) (VI.89) 

obtained from H1|~k 〉 = E(~k )|~k 〉, are 

i~k ·~x h2k2 

x = , with k) = . (VI.90) 〈~ |~k 〉 e√
V 

E(~
¯

2m 

With periodic boundary conditions in a box of size L, the allowed values of ~k are 

(2π/L)(ℓx, ℓy, ℓz), where (ℓx, ℓy, ℓz) are integers. A particular vector in this one-particle 

Hilbert space is specified by its components along each of these basis states (infinite in 

number). The space of quantum micro-states is thus much larger than the corresponding 

6-dimensional classical phase space. The partition function for L → ∞, 

∑ βh̄2k2 d3~k βh̄2k2 

Z1 = tr(ρ) = exp − 
2m 

= V 
(2π)3 

exp − 
2m 

~k 
(VI.91) 

(

√ )3 
V 2πmkBT V 

= = ,
(2π)3 h̄2 λ3

coincides with the classical result, with λ = h/
√

2πmkT (justifying p d3~the use of d3~ q/h3 

as the correct dimensionless measure of phase space). Elements of the density matrix in a 

coordinate representation are 
′ ( 

x ′ ρ ~ = 
∑ 

x ′ ~
e−βE(~k ) 

k ~ = 
λ3 ∫ 

V d3~k e−i~k ·(~x −~x ) 

exp 
βh̄2k2 

〈~ | |x 〉 〈~ |k 〉 
Z1 

〈~ |x 〉
V (2π)3 V 

− 
2m 

~k (VI.92) 
1 m(~x − ~x ′ )2 1 π(~x − ~x ′ )2 

= exp = exp . 
V 

− 
2βh̄2 V 

− 
λ2 

The diagonal elements, 〈~x |ρ|~x 〉 = 1/V , are just the probabilities for finding a particle at 

~x. The off-diagonal elements have no classical analog. They suggest that the appropriate 

way to think of the particle is as a wave-packet of size λ = h/
√

2πmkBT , the thermal 

wavelength. As T → ∞, λ goes to zero, and the classical analysis is valid. As T 0, → 
λ diverges and quantum mechanical effects take over when λ becomes comparable to the 

size of the box. 

Alternatively, we could have obtained eq.(VI.92), by noting that eq.(VI.86) implies 

∂ h̄2 

∂β 
Zρ = −HZρ =

2m 
∇2Zρ. (VI.93) 

This is just the diffusion equation (for the free particle), which can be solved subject to 
′ the initial condition ρ(β = 0) = 1 (i.e. 〈~x |ρ(β = 0)|~x 〉 = δ3(~x −~x ′ )/V ) to yield the result 

of eq.(VI.92). 
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