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III.H Zeroth Order Hydrodynamics 

As a first approximation, we shall assume that in local equilibrium, the density f1 at 

each point in space can be represented as in eq.(III.56), i.e. 

p − m� q, t))
2 

f1
0(� q, t) = 

n(�q, t) 
3/2 

exp −
(� u(�

. (III.93) p, �
q, t)(2πmkBT (�q, t)) 2mkBT (�

The choice of parameters clearly enforces 
∫ 

d3� 1 = p/m�0 
= �u, as required. p f0 n, and ��

Average values are easily calculated from this Gaussian weight; in particular 

�cαcβ�
0 

= 
kBT

δαβ , (III.94) 
m 

leading to 

P 0 and ε =
3 
kBT. (III.95) αβ = nkBTδαβ , 

2 

Since the density f1
0 is even in �c, all odd expectation values vanish, and in particular 

�h0 = 0. (III.96) 

The conservation laws in this approximation take the simple forms 

 
 Dtn = −n∂αuα 
 
 
 
 1 

mDtuα = Fα − ∂α (nkBT ) . (III.97) n 
 
 
 2 
 
 DtT = − T∂αuα

3 

In the above expression, we have introduced the material derivative 

Dt ≡ [∂t + uβ∂β ] , (III.98) 

which measures the time variations of any quantity as it moves along the stream-lines set 

up by the average velocity field �u. By combining the first and third equations, it is easy 

to get 

Dt ln nT−3/2 = 0. (III.99) 

The quantity ln 
( 
nT−3/2

) 
is like a local entropy for the gas (see eq.(III.67)), which according 

to the above equation is not changed along stream-lines. The zeroth order hydrodynamics 

thus predicts that the gas flow is adiabatic. This prevents the local equilibrium solution 
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∫ 

of eq.(III.93) from reaching a true global equilibrium form which necessitates an increase 

in entropy. 

To demonstrate that eqs.(III.97) do not describe a satisfactory approach to equilib­

rium, examine the evolution of small deformations about a stationary (�u0 = 0) state, in a 

uniform box (F� = 0), by setting 

n(�q, t) =n + ν(�q, t) 
. (III.100) 

T (�q, t) =T + θ(�q, t) 

We shall next expand eqs.(III.97) to first order in the deviations (ν, θ, �u). Note that to 

lowest order, Dt = ∂t+O(u), leading to the linearized zeroth order hydrodynamic equations 

 
 ∂tν = −n∂αuα 
 
 
 
 kBT 

m∂tuα = − ∂αν − kB∂αθ . (III.101) n 
 
 
 
 2 
 ∂tθ = − T∂αuα

3 

• Normal modes of the system are obtained by Fourier transformations, 

( ) [ ( )] 
A �k, ω = d3� i �k · q − ωt q, t) ,q dt exp � A (� (III.102) 

where A stands for any of the three fields (ν, θ, �u). The natural vibration frequencies are 

solutions to the matrix equation 

   
ν 0 nkβ 0 

 
ν 
 

ω uα 
 =  kBT δαβkβ 0 kB δαβkβ 

 uβ 
 . (III.103) 

mn m 
θ 0 2 Tkβ 0 θ 

3 

It is easy to check that this equation has the following modes, the first three with zero 

frequency: 

(a) Two modes describe shear flows in a uniform (n = n) and isothermal (T = T ) fluid, in 

which the velocity varies along a direction normal to its orientation (e.g. �u = f(x, t)ŷ). 

In terms of Fourier modes �k·�uT (�k ) = 0, indicating transverse flows that are not relaxed 

in this zeroth order approximation. 

(b) A third zero frequency mode describes a stationary fluid with uniform pressure P = 

nkBT . While n and T may vary across space, their product is constant, insuring 
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that the fluid will not start moving due to pressure variations. The corresponding 

eigenvector of eq.(III.103) is 
  

n 
ve =  0  . (III.104) 

−T 

(c) Finally, the longitudinal velocity (�uℓ � �k) combines with density and temperature 

variations in eigenmodes of the form 

  
n|�k| 

vl =  ω(�k)  , with ω(�k) = ±vℓ|�k|, (III.105) 
2 T |�k|3 

where 
√ 

5 kBT 
vℓ = , (III.106) 

3 m 

is the longitudinal sound velocity. Note that the density and temperature variations 

in this mode are adiabatic, i.e. the local entropy (proportional to ln 
( 
nT−3/2

) 
) is left 

unchanged. 

We thus find that none of the conserved quantities relaxes to equilibrium in the zeroth 

order approximation. Shear flow and entropy modes persist forever, while the two sound 

modes have undamped oscillations. This is a deficiency of the zeroth order approximation 

which is removed by finding a better solution to the Boltzmann equation. 

III.I First Order Hydrodynamics 

While f1
0(� q, t)p, � of eq.(III.93) does set the right hand side of the Boltzmann equation 

to zero, it is not a full solution, as the left hand side causes its form to vary. The left hand 

side is a linear differential operator, which using the various notations introduced in the 

previous sections, can be written as 

pα ∂ Fα ∂ 
L [f ] ≡ ∂t + ∂α + Fα f = Dt + cα∂α + f. (III.107) 

m ∂pα m ∂cα 

It is simpler to examine the effect of L on ln f1
0 . which can be written as 

ln f1
0 = ln 

( 
nT−3/2 

) 
− 

mc2 

− 
3

ln (2πmkB) . (III.108) 
2kBT 2 
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Using the relation ∂(c2/2) = cβ∂cβ = −cβ∂uβ, we get 

( ) 2 

L 
[ 
ln f1

0
] 

=Dt ln nT−3/2 + 
mc

DtT + 
m

cαDtuα
2kBT 2 kBT 

( ) (III.109) 
∂αn 3 ∂αT mc2 m Fαcα 

+cα − + cα∂αT + cαcβ∂αuβ − . 
n 2 T 2kBT 2 kBT kBT 

If the fields n, T , and uα, satisfy the zeroth order hydrodynamic eqs.(III.97), we can 

simplify the above equation to 

L 
[ 
ln f1

0
] 

=0 − 
mc2 

∂αuα + cα 

[( 
Fα 

− 
∂αn 

− 
∂αT 

) 

+ 

( 
∂αn 

− 
3 ∂αT 

) 

− 
Fα 

] 

3kBT kBT n T n 2 T kBT 
2mc m 

+ cα∂αT + cαcβuαβ 
2kBT 2 kBT 

= 
m 

( 

cαcβ − 
δαβ 

c 2 

) 

uαβ + 

( 
mc2 

− 
5 
) 

cα
∂αT. 

kBT 3 2kBT 2 T 
(III.110) 

The characteristic time scale τU for L is extrinsic, and can be made much larger than 

τ×. The zeroth order result is thus exact in the limit (τ×/τU ) → 0; and corrections can be 

constructed in a perturbation series in (τ×/τU ). To this purpose, we set f1 = f1
0(1 + g), 

and linearize the collision operator as 

C [f1, f1] = − d3p�2d
2�b |�v1 − �v2|f1

0(p�1)f1
0(p�2) [g(p�1) + g(p�2) − g(p�1 

′ ) − g(p�2 
′ )] 

≡− f1
0(p�1)CL[g]. 

(III.111) 

While linear, the above integral operator is still difficult to manipulate in general. As a 

first approximation, and noting its characteristic magnitude, we set 

CL[g] ≈ 
g

. (III.112) 
τ× 

This is known as the single collision time approximation, and from the linearized Boltz­

mann equation L[f1] = −f1
0CL[g], we obtain 

g = −τ× 
f

1 
0 L [f1] ≈ −τ×L 

[ 
ln f1

0
] 
, (III.113) 

1 

where we have kept only the leading term. Thus the first order solution is given by (using 

eq.(III.110)) 

f1
1(p, �� q, t) = f1

0(� q, t) 

[ 

1 − 
τµm 

( 

cαcβ − 
δαβ 

c 2 

) 

uαβ − τK 

( 
mc2 

− 
5 
) 

cα
∂αT 

] 

p, � ,
kBT 3 2kBT 2 T 

(III.114) 
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〈( ) 

[ ] 

( ) 

〈 〈( ) 

where τµ = τK = τ× in the single collision time approximation. However, in writing 

the above equation, we have anticipated the possibility of τµ � τK which arises in more = 

sophisticated treatments (although both times are still of order of τ×). 

It is easy to check that 
∫ 

pf1
1 = 

∫ 
pf1

0 = n, and thus various local expectation d3� d3�

values are calculated to first order as 

�O�1 
=

1 
d3p�Of1

0(1 + g) = �O�0 
+ �gO�0 

. (III.115) 
n 

The calculation of averages over products of cα’s, distributed according to the Gaussian 

weight of f1
0, is greatly simplified by the use of Wick’s theorem, which states that expecta­

tion value of the product is the sum over all possible products of paired expectation values, 

for example 
( )2

kBT 
�cαcβcγcδ�0 = (δαβδγδ + δαγδβδ + δαδδβγ) . (III.116) 

m 

(Expectation values involving a product of an odd number of cα’s are zero by symmetry.) 

Using this result, it is easy to verify that 

〈 pα 
〉1 ∂βT mc2 5 

〉0 

= uα − τK − cαcβ = uα. (III.117) 
m T 2kBT 2 

The pressure tensor at first order is given by 

〈 ( )〉0 

P 1 1 
= nm �cαcβ�

0 − 
τµm

cαcβ cµcν − 
δµν 

c 2 
αβ =nm �cαcβ�

kBT 3 
uµν 

(III.118) 
δαβ 

=nkBTδαβ − 2nkBTτµ uαβ − uγγ . 
3 

(Using the above result, we can further verify that ε1 = 
〈 
mc2/2 

〉1 
= 3kBT/2, as before.) 

Finally, the heat flux is given by 

h1 mc2 〉1 
nmτK ∂βT mc2 5 2 

〉0 

α =n cα = − − cαcβc 
2 2 T 2kBT 2 (III.119) 

5 nk2 TτK 
= − B ∂αT. 

2 m 

At this order, we find that spatial variations in temperature generate a heat flow that 

tends to smooth them out, while shear flows are opposed by the off-diagonal terms in the 

pressure tensor. These effects are sufficient to cause relaxation to equilibrium, as can be 

seen by examining the modified behavior of the modes discussed previously. 
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(a) The pressure tensor now has an off–diagonal term 

Pα
1
=6 β = −2nkBTτµuαβ ≡ −µ (∂αuβ + ∂βuα) , (III.120) 

where µ ≡ nkBTτµ is the viscosity coefficient. A shearing of the fluid (e.g. described 

by a velocity uy(x, t)) now leads to a a viscous force that opposes it (proportional to 

µ∂x
2uy), causing its diffusive relaxation as discussed below. 

(b) Similarly, a temperature gradient leads to a heat flux 

�h = −K∇T, (III.121) 

where K = BTτK)/(2m) is the coefficient of thermal conductivity of the gas. If (5nk2 

the gas is at rest (�u = 0, and uniform P = nkBT ), variations in temperature now 

satisfy 

n∂tε =
3 
nkB∂tT = −∂α (−K∂αT ) , ⇒ ∂tT =

2K 
∇2T. (III.122) 

2 3nkB 

This is the Fourier equation and shows that temperature variations relax by diffusion. 

We can discuss the behavior of all the modes by linearizing the equations of motion. 

The first order contribution to Dtuα ≈ ∂tuα is 

δ1 (∂tuα) ≡ 
1 

∂βδ1Pαβ ≈ − 
µ 1 

∂α∂β + δαβ∂γ∂γ uβ , (III.123) 
mn mn 3 

where µ ≡ nkBTτµ. Similarly, the correction for DtT ≈ ∂tθ, is given by 

δ1 (∂tθ) ≡ − 
2 

∂αhα ≈ − 
2K

∂α∂αθ, (III.124) 
3kBn 3kBn 

with K = (5nk2 TτK)/(2m). After Fourier transformation, the matrix equation (III.103) B

is modified to 
  

  0 nδαβkβ 0   
ν ( ) ν 

ω uα 
 = 

 kBT δαβkβ −i µ k2δαβ + 
kαkβ kB δαβkβ 



 uβ 
 . (III.125) 

 mn mn 3 m  
θ 0 2 Tδαβkβ −i2Kk2 θ 

3 3kBn 

We can ask how the normal mode frequencies calculated in the zeroth order approximation 

are modified at this order. It is simple to verify that the transverse (shear) normal models 

(�k · �uT = 0) now have a frequency 

ωT = −i
µ

k2 . (III.126) 
mn 
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The imaginary frequency implies that these modes are damped over a characteristic 

time τT (k) ∼ 1/|ωT | ∼ (λ)2/(τµv2), where λ is the corresponding wavelength, and 

v ∼ kBT/m is a typical gas particle velocity. We see that the characteristic time scales 

grow as the square of the wavelength, which is characteristic of diffusive processes. 

In the remaining normal modes the velocity is parallel to �k, and eq.(III.125) reduces 

to 
     

ν ν 
ω uℓ 

 =    uβ 
 . (III.127) 

θ θ 

0 nk 0 
kBT 
mn k −i4µk2 

3mn 
kB 

m k 

0 2 
3 Tk −i2Kk2 

3kBn 

22Kk k Tk B 2O(τ+ ×

The determinant of the dynamical matrix is the product of the three eigen-frequencies, 

and to lowest order is given by 

det(M) = i · nk
 ). (III.128)
·

3kBn mn 

0At zeroth order the two sound modes have ω±

isobaric mode is 

ω1(k) ≈ 
det(M)

= −i 
2Kk2 

e

(k) = ±vℓk, and hence the frequency of the 

2O(τ+ ×

At first order, the longitudinal sound modes also turn into damped oscillations with fre­

). (III.129)
2k2−v
 5kBnℓ

×±

quencies ω1 

2µ 2K 

±

the trace of the dynamical matrix is equal to the sum of the eigenvalues, and hence 

1 2Oω (τ+ 

(k) = ±vℓk − iγ. The simplest way to obtain the decay rates is to note that 

±vℓk − ik2(k)
 ). (III.130)
+
=

3mn 15kBn 

The damping of all normal modes guarantees the, albeit slow, approach of the gas to its 

final uniform and stationary equilibrium state. 
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