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8.333: Statistical Mechanics I Fall 2007 Test 3


Review Problems 

The third in-class test will take place on Wednesday 11/28/07 from 

2:30 to 4:00 pm. There will be a recitation with test review on Monday 11/26/07. 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The test will be composed entirely from a subset of the following problems. Thus if you 

are familiar and comfortable with these problems, there will be no surprises! 

********


You may find the following information helpful:


Physical Constants 

Electron mass me ≈ 9.1 × 10−31kg Proton mass mp ≈ 1.7 × 10−27kg 

Electron Charge e ≈ 1.6 × 10−19C Planck’s const./2π h̄ ≈ 1.1 × 10−34Js−1 

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s const. σ ≈ 5.7 × 10−8Wm−2K−4 

Boltzmann’s const. kB ≈ 1.4 × 10−23JK−1 Avogadro’s number N0 ≈ 6.0 × 1023mol−1 

Conversion Factors 

A ≡ 10−101atm ≡ 1.0 × 105Nm−2 1˚ m 1eV ≡ 1.1 × 104K 

Thermodynamics 

dE = dW For a gas: ¯ = −PdV For a wire: dW = Jdx TdS+¯ dW ¯

Mathematical Formulas 
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2πd/2 
Surface area of a unit sphere in d dimensions Sd = (d/2−1)! 

1 



� 

� 

� 

� 

� 
� � �� 

1. Debye–Hückel theory and ring diagrams: The virial expansion gives the gas pressure 

as an analytic expansion in the density n = N/V . Long range interactions can result 

in non-analytic corrections to the ideal gas equation of state. A classic example is the 

Coulomb interaction in plasmas, whose treatment by Debye–Hückel theory is equivalent 

to summing all the ring diagrams in a cumulant expansion. 

For simplicity consider a gas of N electrons moving in a uniform background of positive 

charge density Ne/V to ensure overall charge neutrality. The Coulomb interaction takes 

the form 
2 

� eUQ = V(�qi − q�j) , with V(q� ) =
4π �q

− c . 
i<j 

| |

The constant c results from the background and ensures that the first order correction 

vanishes, i.e. 
� 

d3�q V(q� ) = 0. 

(a) Show that the Fourier transform of V(�q ) takes the form 

˜ e2/ω2 for �ω = 0 V (�ω ) = 6 . 
0 for ω� = 0 

� �0 
(b) In the cumulant expansion for ℓ , we shall retain only the diagrams forming aQU 

c 
ring; which are proportional to 

d3�q1 d3�qℓ
Rℓ = 

V 
· · · 

V 
V(�q1 − q�2)V(�q2 − q�3) · · · V(�qℓ − q�1). 

Use properties of Fourier transforms to show that 

Rℓ = 
V ℓ

1 
−1 (2

d3

π

�ω 

)3 
Ṽ(ω� )ℓ . 

� �0 
(c) Show that the number of ring graphs generated in ℓ is QU 

c 

Sℓ =
(N

N

−
! 

ℓ)!
× (ℓ −

2

1)! ≈ (ℓ −
2

1)! 
N ℓ . 

(d) Show that the contribution of the ring diagrams can be summed as 

∞
(−β)ℓ 

lnZrings = ln Z0 + SℓRℓ
ℓ! 

ℓ=2 
� �2V ∞ 4πω2dω κ κ2 

≈ ln Z0 +
2 0 (2π)3 ω 

− ln 1 + 
ω2 

, 
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where κ = βe2N/V is the inverse Debye screening length. 

(Hint: Use ln(1 + x) = − 
�∞

(−x)ℓ/ℓ.) ℓ=1

(e) The integral in the previous part can be simplified by changing variables to x = κ/ω, 

and performing integration by parts. Show that the final result is 

V 
lnZrings = ln Z0 + κ3 . 

12π 

(f) Calculate the correction to pressure from the above ring diagrams. 

(g) We can introduce an effective potential V (�q− �q ′) between two particles by integrating 

over the coordinates of all the other particles. This is equivalent to an expectation value 

that can be calculated perturbatively in a cumulant expansion. If we include only the 

loop-less diagrams (the analog of the rings) between the particles, we have 

∞
ℓ d3�q1 d3�qℓ

V (�q − �q ′) = V (�q − �q ′) + (−βN)
V 

· · · 
V 

V(�q − �q1)V(�q1 − q�2) · · · V(�qℓ − q� ′). 
ℓ=1 

Show that this sum leads to the screened Coulomb interaction V (�q ) = exp(−κ|�q |)/(4π|q� |). 

******** 

2. Virial coefficients: Consider a gas of particles in d-dimensional space interacting 

through a pair-wise central potential, V(r), where 

+∞ for 0 < r < a, 
V(r) = −ε for a < r < b, 

0 for b < r < ∞. 

(a) Calculate the second virial coefficient B2(T ), and comment on its high and low tem­

perature behaviors. 

(b) Calculate the first correction to isothermal compressibility 

1 ∂V � 
κT = . 

V ∂P 
− 

T,N 

(c) In the high temperature limit, reorganize the equation of state into the van der Waals 

form, and identify the van der Waals parameters. 

(d) For b = a (a hard sphere), and d = 1, calculate the third virial coefficient B3(T ). 

******** 
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3. Dieterici’s equation: A gas obeys Dieterici’s equation of state:


a 
P (v − b) = kBT exp −

kBTv 
, 

where v = V/N .


(a) Find the ratio Pv/kBT at the critical point.


(b) Calculate the isothermal compressibility κT for v = vc as a function of T − Tc.


(c) On the critical isotherm expand the pressure to the lowest non-zero order in (v − vc).


******** 

4. Two dimensional Coulomb gas: Consider a classical mixture of N positive, and N 

negative charged particles in a two dimensional box of area A = L × L. The Hamiltonian 

is 
2N 2 2N 
� p�i 

� 

H =
2m 

− cicj ln |�qi − q�j | , 
i=1 i<j 

where ci = +c0 for i = 1, N , and ci = −c0 for i = N + 1, 2N , denote the charges of · · · · · · 
the particles; {�qi} and {�pi} their coordinates and momenta respectively. 

(a) Note that in the interaction term each pair appears only once, and that there is no 

self interaction i = j. How many pairs have repulsive interactions, and how many have 

attractive interactions? 

(b) Write down the expression for the partition function Z(N, T, A) in terms of integrals 

over {�qi} and {�pi}. Perform the integrals over the momenta, and rewrite the contribution 

of the coordinates as a product involving powers of {�qi}, using the identity eln x = x. 

(c) Although it is not possible to perform the integrals over {�qi} exactly, the dependence 

of Z on A can be obtained by the simple rescaling of coordinates, �qi 
′ = �qi/L. Use the 

N/20results in parts (a) and (b) to show that Z ∝ A2N−βc2 
. 

(d) Calculate the two dimensional pressure of this gas, and comment on its behavior at 

high and low temperatures.


(e) The unphysical behavior at low temperatures is avoided by adding a hard–core which


prevents the coordinates of any two particles from coming closer than a distance a. The


appearance of two length scales a and L, makes the scaling analysis of part (c) questionable.


By examining the partition function for N = 1, obtain an estimate for the temperature Tc


at which the short distance scale a becomes important in calculating the partition function,


invalidating the result of the previous part. What are the phases of this system at low and


high temperatures?


******** 
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5. Exact solutions for a one dimensional gas: In statistical mechanics, there are very 

few systems of interacting particles that can be solved exactly. Such exact solutions are 

very important as they provide a check for the reliability of various approximations. A 

one dimensional gas with short-range interactions is one such solvable case. 

(a) Show that for a potential with a hard core that screens the interactions from further 

neighbors, the Hamiltonian for N particles can be written as 

N 2 N 
� p � 

i H =
2m 

+ V(xi − xi−1). 
i=1 i=2 

The (indistinguishable) particles are labelled with coordinates {xi} such that 

0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ L, 

where L is the length of the box confining the particles. 

(b) Write the expression for the partition function Z(T, N, L). Change variables to δ1 = 

x1, δ2 = x2 − x1, , δN = xN − xN−1, and carefully indicate the allowed ranges of · · · 
integration and the constraints.


(c) Consider the Gibbs partition function obtained from the Laplace transformation


∞ 

Z(T, N, P ) = dL exp(−βPL)Z(T, N, L), 
0 

and by extremizing the integrand find the standard formula for P in the canonical ensem­

ble. 
�N

(d) Change variables from L to δN+1 = L− i=1 δi, and find the expression for Z(T, N, P ) 

as a product over one-dimensional integrals over each δi.


(e) At a fixed pressure P , find expressions for the mean length L(T, N, P ), and the density


n = N/L(T, N, P ) (involving ratios of integrals which should be easy to interpret).


Since the expression for n(T, P ) in part (e) is continuous and non-singular for any 

choice of potential, there is in fact no condensation transition for the one-dimensional 

gas. By contrast, the approximate van der Waals equation (or the mean-field treatment) 

incorrectly predicts such a transition. 

(f) For a hard sphere gas, with minimum separation a between particles, calculate the 

equation of state P (T, n). Compare the excluded volume factor with the approximate 

result obtained in earlier problems, and also obtain the general virial coefficient Bℓ(T ). 

******** 

6. One dimensional chain: A chain of N+1 particles of mass m is connected by N massless


springs of spring constant K and relaxed length a. The first and last particles are held
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fixed at the equilibrium separation of Na. Let us denote the longitudinal displacements 

of the particles from their equilibrium positions by {ui}, with u0 = uN = 0 since the end 

particles are fixed. The Hamiltonian governing {ui}, and the conjugate momenta {pi}, is 

N−1 N−2 

= 
� p2 

i + 
K

u 21 + 
� 

(ui+1 − ui)
2 

+ u 2 .H
2m 2 N−1 

i=1 i=1 

(a) Using the appropriate (sine) Fourier transforms, find the normal modes {ũk}, and the 

corresponding frequencies {ωk}. 
(b) Express the Hamiltonian in terms of the amplitudes of normal modes {ũk}, and evaluate 

the classical partition function. (You may integrate the {ui} from −∞ to +∞). 

(c) First evaluate |ũk| 2 
, and use the result to calculate u2 . Plot the resulting squared i 

displacement of each particle as a function of its equilibrium position. 

(d) How are the results modified if only the first particle is fixed (u0 = 0), while the other 

end is free (uN = 0)? (Note that this is a much simpler problem as the partition function 

can be evaluated by changing variables to the N − 1 spring extensions.) 

******** 

7. Black hole thermodynamics: According to Bekenstein and Hawking, the entropy of a 

black hole is proportional to its area A, and given by 

kBc3


S = A .

4Gh̄ 

(a) Calculate the escape velocity at a radius R from a mass M using classical mechanics. 

Find the relationship between the radius and mass of a black hole by setting this escape 

velocity to the speed of light c. (Relativistic calculations do not modify this result which 

was originally obtained by Laplace.) 

(b) Does entropy increase or decrease when two black holes collapse into one? What is the 

entropy change for the universe (in equivalent number of bits of information), when two 

solar mass black holes (M⊙ ≈ 2 × 1030kg) coalesce? 

(c) The internal energy of the black hole is given by the Einstein relation, E = Mc2 . Find 

the temperature of the black hole in terms of its mass. 

(d) A “black hole” actually emits thermal radiation due to pair creation processes on its 

event horizon. Find the rate of energy loss due to such radiation. 

(e) Find the amount of time it takes an isolated black hole to evaporate. How long is this 

time for a black hole of solar mass? 
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(f) What is the mass of a black hole that is in thermal equilibrium with the current cosmic


background radiation at T = 2.7K?


(g) Consider a spherical volume of space of radius R. According to the recently formulated


Holographic Principle there is a maximum to the amount of entropy that this volume of


space can have, independent of its contents! What is this maximal entropy?


******** 

8. Quantum harmonic oscillator: Consider a single harmonic oscillator with the Hamil­

tonian 
p2 mω2q2 h̄ d H =
2m 

+
2 

, with p = 
i dq 

. 

(a) Find the partition function Z, at a temperature T , and calculate the energy 〈H〉. 
(b) Write down the formal expression for the canonical density matrix ρ in terms of the 

eigenstates ({|n〉}), and energy levels ({ǫn}) of H. 

(c) Show that for a general operator A(x), 

� � 

∂ ∂A ∂A 
exp [A(x)] = exp [A(x)] , unless A, = 0,

∂x 
6

∂x ∂x 

while in all cases 
� � 

∂ ∂A 
tr {exp [A(x)]} = tr exp [A(x)] . 

∂x ∂x 

(d) Note that the partition function calculated in part (a) does not depend on the mass 

m, i.e. ∂Z/∂m = 0. Use this information, along with the result in part (c), to show that 

p2 mω2q2 

= . 
2m 2 

(e) Using the results in parts (d) and (a), or otherwise, calculate q2 . How are the results 

in Problem #6 modified at low temperatures by inclusion of quantum mechanical effects. 

(f) In a coordinate representation, calculate 〈q′|ρ|q〉 in the high temperature limit. One 

approach is to use the result 

exp(βA) exp(βB) = exp 
� 

β(A + B) + β2[A, B]/2 + O(β3) 
� 

. 

(g) At low temperatures, ρ is dominated by low energy states. Use the ground state 

wave-function to evaluate the limiting behavior of 〈q′|ρ|q〉 as T → 0. 
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(h) Calculate the exact expression for 〈q′|ρ|q〉. 
******** 

9. Relativistic Coulomb gas: Consider a quantum system of N positive, and N negative 

charged relativistic particles in box of volume V = L3 . The Hamiltonian is 

2N 2N 

= c p�i + 
eiej 

,H
i=1 

| |
i<j 

|�ri − �rj | 

where ei = +e0 for i = 1, N , and ei = for i = N + 1, 2N , denote the charges of · · · −e0 · · · 
the particles; {�ri} and {p�i} their coordinates and momenta respectively. While this is too 

complicated a system to solve, we can nonetheless obtain some exact results. 

(a) Write down the Schrödinger equation for the eigenvalues εn(L), and (in coordinate 

space) eigenfunctions Ψn({�ri}). State the constraints imposed on Ψn({�ri}) if the particles 

are bosons or fermions? 

(b) By a change of scale �ri 
′ = �ri/L, show that the eigenvalues satisfy a scaling relation 

εn(L) = εn(1)/L. 

(c) Using the formal expression for the partition function Z(N, V, T ), in terms of the 

eigenvalues {εn(L)}, show that Z does not depend on T and V separately, but only on a 

specific scaling combination of them. 

(d) Relate the energy E, and pressure P of the gas to variations of the partition function. 

Prove the exact result E = 3PV . 

(e) The Coulomb interaction between charges in in d-dimensional space falls off with sepa­

ration as eiej/ |�ri − �rj | d−2 
. (In d = 2 there is a logarithmic interaction.) In what dimension 

d can you construct an exact relation between E and P for non-relativistic particles (ki­

netic energy 
� 

i p�i
2/2m)? What is the corresponding exact relation between energy and 

pressure? 

(f) Why are the above ‘exact’ scaling laws not expected to hold in dense (liquid or solid) 

Coulomb mixtures? 

******** 

10. The virial theorem is a consequence of the invariance of the phase space for a system 

of N (classical or quantum) particles under canonical transformations, such as a change of 

scale. In the following, consider N particles with coordinates {�qi}, and conjugate momenta 

{p�i} (with i = 1, , N), and subject to a Hamiltonian H ({p�i} , {�qi}). · · · 
(a) Classical version: Write down the expression for the classical partition function, Z ≡ 
Z [H]. Show that it is invariant under the rescaling �q1 λ�q1, p�1 p�1/λ of a pair of → → 
conjugate variables, i.e. Z [Hλ] is independent of λ, where Hλ is the Hamiltonian obtained 

after the above rescaling. 
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(b) Quantum mechanical version: Write down the expression for the quantum partition 

function. Show that it is also invariant under the rescalings �q1 λ�q1, p�1 p�1/λ, where → →
p�i and �qi are now quantum mechanical operators. (Hint: start with the time-independent 

Schrödinger equation.) 

(c) Now assume a Hamiltonian of the form 

� p�i 
2 

H =
2m 

+ V ({q�i}) . 
i 

Use the result that Z [Hλ] is independent of λ to prove the virial relation 

p�1
2 ∂V 

m 
= 

∂�q1 
· �q1 , 

where the brackets denote thermal averages. 

(d) The above relation is sometimes used to estimate the mass of distant galaxies. The 

stars on the outer boundary of the G-8.333 galaxy have been measured to move with 

velocity v ≈ 200 km/s. Give a numerical estimate of the ratio of the G-8.333’s mass to its 

size. 

******** 
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