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8.333: Statistical Mechanics I Fall 2007 Test 2


Review Problems 

The second in-class test will take place on Wednesday 10/24/07 from 

2:30 to 4:00 pm. There will be a recitation with test review on Monday 10/22/07. 

The test is ‘closed book,’ and composed entirely from a subset of the following prob­

lems. Thus if you are familiar and comfortable with these problems, there will be no 

surprises! 

********


You may find the following information helpful:


Physical Constants 

Electron mass me ≈ 9.1 × 10−31kg Proton mass mp ≈ 1.7 × 10−27kg 

Electron Charge e ≈ 1.6 × 10−19C Planck’s const./2π h̄ ≈ 1.1 × 10−34Js−1 

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s const. σ ≈ 5.7 × 10−8Wm−2K−4 

Boltzmann’s const. kB ≈ 1.4 × 10−23JK−1 Avogadro’s number N0 ≈ 6.0 × 1023mol−1 

Conversion Factors 

A ≡ 10−101atm ≡ 1.0 × 105Nm−2 1˚ m 1eV ≡ 1.1 × 104K 

Thermodynamics 

dE = dW For a gas: ¯ = −PdV For a wire: dW = Jdx TdS+¯ dW ¯

Mathematical Formulas 
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1. One dimensional gas: A thermalized gas particle is suddenly confined to a one– 

dimensional trap. The corresponding mixed state is described by an initial density function 

ρ(q, p, t = 0) = δ(q)f(p), where f(p) = exp(−p2/2mkBT )/
√

2πmkBT . 

(a) Starting from Liouville’s equation, derive ρ(q, p, t) and sketch it in the (q, p) plane. 

(b) Derive the expressions for the averages 
〈 
q2
〉 

and 
〈 
p2
〉 

at t > 0. 

(c) Suppose that hard walls are placed at q = ±Q. Describe ρ(q, p, t ≫ τ), where τ is an 

appropriately large relaxation time. 

(d) A “coarse–grained” density ρ̃, is obtained by ignoring variations of ρ below some small 

resolution in the (q, p) plane; e.g., by averaging ρ over cells of the resolution area. Find 

ρ̃(q, p) for the situation in part (c), and show that it is stationary. 

******** 

2. Evolution of entropy: The normalized ensemble density is a probability in the phase 

space Γ. This probability has an associated entropy S(t) = dΓρ(Γ, t) lnρ(Γ, t). − 
(a) Show that if ρ(Γ, t) satisfies Liouville’s equation for a Hamiltonian H, dS/dt = 0. 

(b) Using the method of Lagrange multipliers, find the function ρmax(Γ) which maximizes 

the functional S[ρ], subject to the constraint of fixed average energy, 〈H〉 = dΓρH = E. 

(c) Show that the solution to part (b) is stationary, i.e. ∂ρmax/∂t = 0. 

(d) How can one reconcile the result in (a), with the observed increase in entropy as 

the system approaches the equilibrium density in (b)? (Hint: Think of the situation 

encountered in the previous problem.) 

******** 

3. The Vlasov equation is obtained in the limit of high particle density n = N/V , or large 

inter-particle interaction range λ, such that nλ3 ≫ 1. In this limit, the collision terms are 

dropped from the left hand side of the equations in the BBGKY hierarchy. 

The BBGKY hierarchy 

s s
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where nλ3 is the number of particles within the interaction range λ, and v is a typical 

velocity. The Boltzmann equation is obtained in the dilute limit, nλ3 ≪ 1, by disregarding 

terms of order 1/τX ≪ 1/τc. The Vlasov equation is obtained in the dense limit of nλ3 ≫ 1 

by ignoring terms of order 1/τc ≪ 1/τX . 

(a) Assume that the N body density is a product of one particle densities, i.e. ρ = 
∏N 

ρ1(xi, t), where xi ≡ (p~i, ~qi). Calculate the densities fs, and their normalizations. i=1 

(b) Show that once the collision terms are eliminated, all the equations in the BBGKY 

hierarchy are equivalent to the single equation 

∂ p~ ∂ ∂Ueff ∂ 
p, ~

∂t 
+ 

m 
· 
∂~q 

− 
∂~q 

· 
∂~p 

f1(~ q, t) = 0, 

where 
∫ 

Ueff(~q, t) = U(q~ ) + dx′ V(q~− ~q ′)f1(x
′, t). 

(c) Now consider N particles confined to a box of volume V , with no additional potential. 

Show that f1(~ p ) g(p~ )/V is a stationary solution to the Vlasov equation for any g(p~ ). q, ~ = 

Why is there no relaxation towards equilibrium for g(p~ )? 

******** 

4. Two component plasma: Consider a neutral mixture of N ions of charge +e and mass 

m+, and N electrons of charge −e and mass m−, in a volume V = N/n0. 

(a) Show that the Vlasov equations for this two component system are 

 
∂ p~ ∂ ∂Φeff ∂ 

 f+(~ q, t) + + e p, ~ = 0 
 ∂t m+ 

· 
∂~q ∂~q 

· 
∂~p 

 ∂ ~p ∂ ∂Φeff ∂ 
 
 p, ~

∂t 
+ 

m− 
· 
∂~q 

− e 
∂~q 

· 
∂~p 

f−(~ q, t) = 0 

where the effective Coulomb potential is given by 

Φeff(~ = q ) + e dx′C(~q − q~ ′) [f+(x′, t) − f−(x′, t)] .q, t) Φext(~

Here, Φext is the potential set up by the external charges, and the Coulomb potential C(~q ) 

satisfies the differential equation ∇2C = 4πδ3(q~ ). 

(b) Assume that the one particle densities have the stationary forms f = g (p~ )n (q~ ). ± ± ±

Show that the effective potential satisfies the equation 

∇ 2Φeff = 4πρext + 4πe (n+(q~ ) − n−(~q )) , 
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where ρext is the external charge density. 

(c) Further assuming that the densities relax to the equilibrium Boltzmann weights 

n±(~q ) = n0 exp [±βeΦeff (q~)], leads to the self-consistency condition 

∇ 2Φeff = 4π 
[ 
ρext + n0e 

( 
e βeΦeff − e−βeΦeff 

)] 
, 

known as the Poisson–Boltzmann equation. Due to its nonlinear form, it is generally not 

possible to solve the Poisson–Boltzmann equation. By linearizing the exponentials, one 

obtains the simpler Debye equation 

∇ 2Φeff = 4πρext + Φeff/λ2 . 

Give the expression for the Debye screening length λ. 

(d) Show that the Debye equation has the general solution 

Φeff(~q ) = d3~q′G(~q − q~ ′)ρext(q~
′), 

where G(~q ) = exp(−|~q |/λ)/|q~ | is the screened Coulomb potential.


(e) Give the condition for the self-consistency of the Vlasov approximation, and interpret


it in terms of the inter-particle spacing?


(f) Show that the characteristic relaxation time (τ ≈ λ/c) is temperature independent. 

What property of the plasma is it related to? 

******** 

5. Two dimensional electron gas in a magnetic field: When donor atoms (such as P or As) 

are added to a semiconductor (e.g. Si or Ge), their conduction electrons can be thermally 

excited to move freely in the host lattice. By growing layers of different materials, it is 

possible to generate a spatially varying potential (work–function) which traps electrons at 

the boundaries between layers. In the following, we shall treat the trapped electrons as a 

gas of classical particles in two dimensions. 

If the layer of electrons is sufficiently separated from the donors, the main source of 

scattering is from electron–electron collisions. 

(a) The Hamiltonian for non–interacting free electrons in a magnetic field has the form 



( )2 
 

H = 
∑



 p~i −
2m

eA~

± µB|B~ | 
. 

i 

(The two signs correspond to electron spins parallel or anti-parallel to the field.) The


vector potential A~ = B~ × q/~ 2 describes a uniform magnetic field B~ . Obtain the classical
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equations of motion, and show that they describe rotation of electrons in cyclotron orbits


in a plane orthogonal to B~ .


(b) Write down heuristically (i.e. not through a step by step derivation), the Boltzmann


equations for the densities f (~ q, t) and f (~ q, t) of electrons with up and down spins,
p, ~ p, ~↑ ↓

in terms of the two cross-sections σ ≡ σ ↑↑ = σ ↓↓, and σ × ≡ σ ↑↓, of spin conserving


collisions.


(c) Show that dH/dt ≤ 0, where H = H +H is the sum of the corresponding H functions.
↑ ↓ 

(d) Show that dH/dt = 0 for any ln f which is, at each location, a linear combination of 

quantities conserved in the collisions. 

(e) Show that the streaming terms in the Boltzmann equation are zero for any function 

that depends only on the quantities conserved by the one body Hamiltonians. 

(f) Show that angular momentum L~ = ~q×p~, is conserved during, and away from collisions. 

(g) Write down the most general form for the equilibrium distribution functions for particles 

confined to a circularly symmetric potential. 

(h) How is the result in part (g) modified by including scattering from magnetic and 

non-magnetic impurities? 

(i) Do conservation of spin and angular momentum lead to new hydrodynamic equations? 

******** 

6. The Lorentz gas describes non-interacting particles colliding with a fixed set of scat­

terers. It is a good model for scattering of electrons from donor impurities. Consider a 

uniform two dimensional density n0 of fixed impurities, which are hard circles of radius a. 

(a) Show that the differential cross section of a hard circle scattering through an angle θ is 

a θ 
dσ = sin dθ, 

2 2 

and calculate the total cross section. 

(b) Write down the Boltzmann equation for the one particle density f(~ p, t) of the Lorentz q, ~

gas (including only collisions with the fixed impurities). (Ignore the electron spin.) 

(c) Using the definitions F~ ≡ −∂U/∂~q, and 

n(~ = d2~ q, ~ and 〈g(q, t~ )〉 = 
n(~

1 
d2~ q, ~ q, t),q, t) pf(~ p, t), pf(~ p, t)g(~

q, t) 

show that for any function χ( p~ ), we have | |
( 〈 〉) ( 〈 〉) 

∂ ∂ p~ ~ ∂χ 

∂t 
(n 〈χ〉) + 

∂~q 
· n 

m
χ = F · n 

∂~p 
. 
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(d) Derive the conservation equation for local density ρ ≡ mn(~q, t), in terms of the local 

velocity ~u ≡ 〈p/m~ 〉. 
(e) Since the magnitude of particle momentum is unchanged by impurity scattering, the 

Lorentz gas has an infinity of conserved quantities p~ m . This unrealistic feature is removed | |
upon inclusion of particle–particle collisions. For the rest of this problem focus only on 

p2/2m as a conserved quantity. Derive the conservation equation for the energy density 

ǫ(~
ρ 〈 

c 2
〉 

where ~c ≡
m

p~ − ~u, q, t) ≡ ,
2 

in terms of the energy flux ~h ≡ ρ 
〈 
~c c2 
〉 
/2, and the pressure tensor Pαβ ≡ ρ 〈cαcβ〉. 

(f) Starting with a one particle density 

f0(~ q, t) exp 
p2 1 

p, ~q, t) = n(~ −
2mkBT (~ 2πmkBT (~

, 
q, t) q, t)

reflecting local equilibrium conditions, calculate ~u, ~h, and Pαβ . Hence obtain the zeroth 

order hydrodynamic equations. 

(g) Show that in the single collision time approximation to the collision term in the Bolz­

mann equation, the first order solution is 

f1(~ f0(~
p~ ∂ln ρ ∂lnT p2 ∂T F~

p, ~q, t) = p, ~q, t) 1 − τ
m 

· 
∂~q 

− 
∂~q 

+
2mkBT 2 ∂~q 

−
kBT

. 

(h) Show that using the first order expression for f , we obtain 

ρ~u = nτ F~ − kBT∇ ln (ρT ) . 

(i) From the above equation, calculate the velocity response function χαβ = ∂uα/∂Fβ. 

(j) Calculate Pαβ, and ~h, and hence write down the first order hydrodynamic equations. 

******** 

7. Thermal conductivity: Consider a classical gas between two plates separated by a 

distance w. One plate at y = 0 is maintained at a temperature T1, while the other plate at 

y = w is at a different temperature T2. The gas velocity is zero, so that the initial zeroth 

order approximation to the one particle density is, 

f1
0(p, x, y, z~ ) =

[2πmk

n

B

(

T

y)

(y)]
3/2 

exp −
2mk

p~

B

· 
T

p~

(y) 
. 
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(a) What is the necessary relation between n(y) and T (y) to ensure that the gas velocity ~u 

remains zero? (Use this relation between n(y) and T (y) in the remainder of this problem.) 

(b) Using Wick’s theorem, or otherwise, show that 

〈 
2
〉0 0 〈 

4
〉0 0 2 

p = 3 (mkBT ) , and p = 15 (mkBT ) ,≡ 〈pαpα〉 ≡ 〈pαpαpβpβ〉 

where 〈O〉 0 indicates local averages with the Gaussian weight f0 . Use the result p6
〉0 

= 1

105(mkBT )3 in conjunction with symmetry arguments to conclude 

〈 〉0 
py
2 p 4 = 35 (mkBT )

3 
. 

(c) The zeroth order approximation does not lead to relaxation of temperature/density 

variations related as in part (a). Find a better (time independent) approximation f1 p, y), 1 (~

by linearizing the Boltzmann equation in the single collision time approximation, to 

[ 
f1
] ∂ py ∂

f0 f1
1 − f1

0 

L 1 ≈ 
∂t 

+ 
m ∂y 1 ≈ − 

τK 
, 

where τK is of the order of the mean time between collisions. 

(d) Use f1
1, along with the averages obtained in part (b), to calculate hy, the y component 

of the heat transfer vector, and hence find K, the coefficient of thermal conductivity. 

(e) What is the temperature profile, T (y), of the gas in steady state? 

******** 
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