
8.333: Statistical Mechanics I Problem Set # 5 Due: 11/22/13
 

Interacting particles & Quantum ensembles 

1. Surfactant condensation: N surfactant molecules are added to the surface of water 

over an area A. They are subject to a Hamiltonian 

N 
L pi 2 

i 1 
H = + V(iqi − iqj),

2m 2 
i=1 

L

i,j 

where iqi and pii are two dimensional vectors indicating the position and momentum of 

particle i. (This simple form ignores the couplings to the fluid itself. The actual kientic 

and potential energies are more complicated.) 

(a) Write down the expression for the partition function Z(N, T,A) in terms of integrals 

over iqi and pii, and perform the integrals over the momenta. 

The inter–particle potential V(ir) is infinite for separations |ir | < a, and attractive for 
∞

|ir | > a such that 
a 

2πrdrV(r) = −u0. 

(b) Estimate the 

J

total non–excluded area available in the positional phase space of the 

system of N particles. 

(c) Estimate the total potential energy of the system, within a uniform density approxima­

tion n = N/A. Using this potential energy for all configurations allowed in the previous 

part, write down an approximation for Z. 

(d) The surface tension of water without surfactants is σ0, approximately independent of 

temperature. Calculate the surface tension σ(n, T ) in the presence of surfactants. 

(e) Show that below a certain temperature, Tc, the expression for σ is manifestly incorrect. 

What do you think happens at low temperatures? 

(f) Compute the heat capacities, CA and write down an expression for Cσ without explicit 

evaluation, due to the surfactants. 

******** 

2. Critical point behavior: The pressure P of a gas is related to its density n = N/V , 

and temperature T by the truncated expansion 

b c  P = kBTn− n 2 + n3 ,
2 6 

where b and c are assumed to be positive temperature independent constants.
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(a) Locate the critical temperature Tc below which this equation must be invalid, and 

the corresponding density nc and pressure Pc of the critical point. Hence find the ratio 

kBTcnc/Pc. 

 (b) Calculate the isothermal compressibility κ 1 ∂V 
T = −

V ∂P

 

 , and sketch its behavior as a 
T

function of T for n = nc. 

(c) On the critical isotherm give an expression for (P − Pc) as a function of (n − nc). 

(d) The instability in the isotherms for T < Tc is avoided by phase separation into a liquid 

of density n+ and gas of density n−. For temperatures close to Tc, these densities behave 

as n± ≈ nc (1± δ). Using a Maxwell construction, or otherwise, find an implicit equation 

for δ(T ), and indicate its behavior for (Tc − T ) → 0. (Hint: Along an isotherm, variations 

of chemical potential obey dµ = dP/n.) 

******** 

3. (Optional) The Manning transition: When ionic polymers (polyelectrolytes) such as 

DNA are immersed in water, the negatively charged counter-ions go into solution, leaving 

behind a positively charged polymer. Because of the electrostatic repulsion of the charges 

left behind, the polymer stretches out into a cylinder of radius a, as in the figure below. 

While thermal fluctuations favor ions wandering in the solvent, electrostatic attractions 

prefer their return and condensation on the polymer. If the number of counter-ions is N , 

they interact with the N positive charges left behind on the rod through the potential 

φ (r) = −2 (Ne/L) ln (r/R), where r is the radial coordinate in a cylindrical geometry. 

If we ignore the Coulomb repulsion between counter-ions, they can be described by the 

classical Hamiltonian 
N 

p  
L 

�

2
 r 

H = i + 2e 2n ln
2

 )

� 

,
m R

i=1 

where n = N/L.
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(a) For a cylindrical container of radius R, calculate the canonical partition function Z in 

terms of temperature T , density n, and radii R and a. 

(b) Calculate the probability distribution function p (r) for the radial position of a counter­

ion, and its first moment (r), the average radial position of a counter-ion. 

(c) The behavior of the results calculated above in the limit R ≫ a is very different at high 

and low temperatures. Identify the transition temperature, and characterize the nature of 

the two phases. In particular, how does (r) depend on R and a in each case? 

(d) Calculate the pressure exerted by the counter-ions on the wall of the container, at 

r = R, in the limit R ≫ a, at all temperatures. 

(e) The character of the transition examined in part (d) is modified if the Coulomb in­

teractions between counter-ions are taken into account. An approximate approach to the 

interacting problem is to allow a fraction N1 of counter-ions to condense along the polymer 

rod, while the remaining N2 = N −N1 fluctuate in the solvent. The free counter-ions are 

again treated as non-interacting particles, governed by the Hamiltonian 

N 
p2 

 r
H = 

L 

i + 2e 2n2 ln ,
2m R

i=1 

�[

 ( )

�]

where n2 = N2/L. Guess the equilibrium number of non-interacting ions, N∗ 
2 , and justify 

your guess by discussing the response of the system to slight deviations from N∗ 
2 . (This is 

a qualitative question for which no new calculations are needed.) 

********
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4. Point particle condensation: Consider a system of N classical point particles of mass m 

at temperature T , and volume V . An unspecified form of attraction between the particles 

reduces the energy of any configuration by an amount −uN2/(2V ) with u > 0, such that 

the partition function is 

βuN2 

Z(T,N, V ) = Zideal gas(T,N, V )× exp

  

,
2V

where Zideal gas(T,N, V ) is the partition function of a classical gas, and β = (kBT )
−1 . 

(a) Using the partition function, or otherwise, compute all cumulants, (Hp)c, of the en-

ergy.
 

(b) Using the partition function, or otherwise, compute the pressure P (n, T ), as a function
 

of the density n = N/V . 

 (c) Compute the isothermal compressibility κ (n) = − 1 ∂V 
T V ∂P 

. 
T 

(d) Find the condensation line Pc(T ). 

 ∣

 ∣

******** 

5. (Optional problem) Hard rods: A collection of N asymmetric molecules in two 

dimensions may be modeled as a gas of rods, each of length 2l and lying in a plane. A 

rod can move by translation of its center of mass and rotation about latter, as long as it 

does not encounter another rod. Without treating the hard-core interaction exactly, we 

can incorporate it approximately by assuming that the rotational motion of each rod is 

restricted (by the other rods) to an angle θ, which in turn introduces an excluded volume 

Ω (θ) (associated with each rod). The value of θ is then calculated self consistently by 

maximizing the entropy at a given density n = N/V , where V is the total accessible area. 

θ 

2l 

excluded 
volume 
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(a) Write down the entropy of such a collection of rods in terms of N , n, Ω, and A (θ), the 

phase space volume associated to the rotational freedom of a single rod. (You may ignore 

the momentum contributions throughout, and consider the large N limit.) 

(b) Extremizing the entropy as a function of θ, relate the density to Ω, A, and their
 

derivatives Ω ′ , A ′ ; express your result in the form n = f (Ω, A,Ω ′ , A ′ ).
 

(c) Express the excluded volume Ω in terms of θ and sketch f as a function of θ ∈ [0, π],
 

assuming A ∝ θ.
 

(d) Describe the equilibrium state at high densities. Can you identify a phase transition
 

as the density is decreased? Draw the corresponding critical density nc on your sketch.
 

What is the critical angle θc at the transition? You don’t need to calculate θc explicitly,
 

but give an (implicit) relation defining it. What value does θ adopt at n < nc?
 

******** 

i6. Electron spin: The Hamiltonian for an electron in a magnetic field B is 

0 1 0 −i 1 0 iH = −µBiσ.B, where σx = 

( ) 

, σy = 

( ) 

, and σ

  

,
1 0 i 0 z =

(

0 −1 

)

are the Pauli spin operators, and µB is the Bohr magneton. 

i(a) In the quantum canonical ensemble evaluate the density matrix if B is along the z
 

direction.
 

i(b) Repeat the calculation assuming that B points along the x-direction.
 

(c) Calculate the average energy in each of the above cases. 

******** 

7. (Optional problem) Quantum rotor: Consider a rotor in two dimensions with 

2 h̄ d2
H = − , and 0 ≤ θ < 2π. 

2I dθ2 

(a) Find the eigenstates and energy levels of the system. 

(b) Write the expression for the density matrix (θ ′ |ρ|θ) in a canonical ensemble of temper­

ature T , and evaluate its low and high temperature limits. 

******** 
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8. Quantum mechanical entropy: A quantum mechanical system (defined by a Hamil­

tonian H), is described by a density matrix ρ(t), which has an associated entropy 

S(t) = −tr [ρ(t) lnρ(t)]. 

(a) Write down the time evolution equation for the density matrix, and calculate dS/dt. 

(b) Using the method of Lagrange multipliers, find the density operator ρmax which maxi­

mizes the functional S[ρ], subject to the constraint of fixed average energy (H) = tr(ρH) = 

E. 

(c) Show that the solution to part (b) is stationary, i.e. ∂ρmax/∂t = 0. 

******** 

9. Zero point energy: The classical Hamiltonian for a harmonic oscillator of frequency ω 

is 
p2 mω2q2

Hcl = + . 
2m 2 

We will assume that in quantum mechanics the energy levels are quantized as 

Hqm = x + yn, for n = 0, 1, 2, · · · , 

and aim to find the parameters x and y by matching to classical counterparts. 

(a) Compute the classical partition function Zcl(β), and energy Ecl(β) at temperature 

T = (kBβ)
−1, using (dp dq)/h as dimensionless measure of phase space.
 

(b) Compute the quantum partition function Zqm(β), and obtain y by matching to Zcl(β)
 

at high temperatures.
 

(c) Compute the energy Eqm(β), and expand the result for β → 0, including the leading 

two terms. By matching to Ecl(β) find the parameter x. 

******** 

10. Vibrational and rotational heat capacities at high temperatures: 

(a) Calculate the partition function Zvib. of a (quantum) harmonic oscillator of frequency 

ω, and expand the resulting lnZvib. at high temperatures to order of (βh̄ω)2 .

(b) Use the above expansion to find the first correction to vibrational heat capacity at high 

temperatures due to quantization. 
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The Abel–Plana formula provides a systematic way of replacing sums with integrals, 

as 
∞  ∞  ∞ 
L 1 f(it)− f(−it)

f(n) = dxf(x) + f(0) + i dt . 
2 2πt 

 0 0 e − 1
n=0

(c) Check the above formula to confirm that it provides the correct expansion for the 

geometric series e−nu 
n for small u. 

(d) Use the Abel-

L

Plana formula to show that
∞

ℓ=0(2ℓ+1)e−uℓ(ℓ+1) = 1 + 1+ u 
u   +O(u2).3 15

(e) Use the result above to calculate the energ

L

y of a quantum rotor with moment of inertia 

I at high temperatures. 

(f) Find the first quantum correction to rotational heat capacity at high temperatures. 

******** 

11. (Optional) Ortho/para–hydrogen: Hydrogen molecules can exist in ortho and para
 

states.
 

(a) The two nuclei (protons) of H2 in para-hydrogen form a singlet (antisymmetric) state.
 

The orbital angular momentum can thus only take even values; i.e.
 

h̄2

Hp = ℓ(ℓ+ 1),
2I 

where ℓ = 0, 2, 4, · · ·. Calculate the rotational partition function of para-hydrogen, and 

evaluate its low and high temperature limits. 

(b) In ortho-hydrogen the protons are in a triply degenerate symmetric state, hence 

h̄2

Ho = ℓ(ℓ+ 1),
2I 

with ℓ = 1, 3, 5, · · ·. Calculate the rotational partition function of ortho-hydrogen, and 

evaluate its low and high temperature limits. 

(c) For an equilibrium gas of N hydrogen molecules calculate the partition function. 

(Hint: Sum over contributions from mixtures of Np para- and No = N−Np ortho-hydrogen 

particles. Ignore vibrational degrees of freedom.) 

(d) Write down the expression for the rotational contribution to the internal energy (Erot.), 

and comment on its low and high temperature limits. 
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Actually, due to small transition rates between ortho- and para-hydrogen, in most 

circumstances the mixture is not in equilibrium. 

******** 

12. van Leeuwen’s theorem: Consider a gas of charged particles subject to a general 

Hamiltonian of the form 
N 
L pi 2 

i 
H = + U(iq1, · · · , iqN ). 

2m 
i=1 

i iIn an external magnetic field, B, the canonical momenta, pin, are replaced with pin − eA, 

i i i iwhere A is the vector potential, B = ∇× A. Show that if quantum effects are ignored, the 

ithermodynamics of the problem is independent of B. 

******** 
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