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Chapter 9


Resolution of UA(1) 

Resolution of the UA(1) problem: We have apparently, 

≈ �αβγδGa∂µj
µ5 Ga 

γδ(+mass terms) (9.1) αβ 

so that symmetry is removed. However, for the Abelian case we saw that the 
right-hand side is a total derivative, and this continues to be true in the non-Abelian 
case. Indeed 
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(9.2) ≡ ∂αKα 

So there is a modified current that generates a legitimate symmetry. 
This is not necessary a disacter, because the current is not gauge-invariant. So 

the massless states it produces might not be physical (that’s what happens in the 
Meissner-Higgs effect), but this is not convincing unless we have a mechanism. 

Here is the basic story-line: 

1. Since Kα is not gauge-invariant, it does not appear directly in the action, and 
it may fluctuate more wildly. This could prevent the surface terms in 

∂j − �GG = ∂K = KdS (9.3) 
S 

from vanishing. 

12. Concretely, we can imagine A ∼↑∞ 1 in such a way that K ∼ but G2 falls r r r3 

off faster. 
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3. In fact this will happen if A approaches a non-trivial (direction dependent) pure 
gauge configuration. 

Aα Ω−1∂αΩ (9.4) → 

4. Specifically, the integral 
� 

KαdSα is proportional to the degree of the mapping 
from S3, the boundary of (Euclideanized) space-time into the manifold of SU(2), 
which is also topologically S3 . 

Mathematical aside: SU(2) matrices: −
α
β

β 
, |α|2 + β 2 = 1 S3 . Other 

α 
| | ⇒


groups: deform map into a sphere π3(G) = Z for any group G.


5. From the inequality 

˜tr(Gµν − Gµν )
2 ≥ 0 (9.5) 

(with ˜
2
�µναβ G

αβ ) we derive Gµν ≡ 1 

trGµνGµν ≥ trGµνGµν | (≥ 8π2) (9.6) | ˜

1 
� 

2gThus the weight e
− GG 

of configurations that violate the conservation law is 
8π2


g2 . It vanishes to all nodes in perturbation theory.
≤ e
− 

Scholium: 

As in the Higgs effect the massless would be Nambu-Goldstone modes are sub­
ject to long-range forces involving gauge fields, but here the relevant gauge fluc­
tuations are topological and quantized. Because of this, the mass-generation 
mechanism is essentially nonperturbative. Of course, this had to be so in QCD, 

28π

g2since the only mass scale is ∼ e
−

. 

6. The bound is saturated when 

Gµν (9.7) Gµν = ± ˜

This can be solved fairly simply for the minimal charges, and using very elabo­
rate mathematics for higher charges. However, the precise solutions are limited 
value for practical QCD, basically, because the coupling is just uniformly small. 
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7. The detailed way in which UA(1) violation shows up – in terms of changes in 
fermion quantum numbers or occurance of otherwise forbidden processes, is 
quite interesting and important in other contexts. 

When calculating a transition amplitude using path integrals, one must calcu­
late the fermion determinant. The integrated anomaly equation 

ΔQ5 = (Δwinding) × (# doublets) (9.8) 

suggests that this determinant will vanish when Δwinding is evaluated between 
states in which the ΔQ5 is not appropriate. This signals zero-energy solution, 
a zero-modes of the Dirac equation. There is a corresponding mathematical 
theorem, the Atiyah-Singer index theorem. 

8. To evaluate processes in the nonvanishing sector, we must allow for creation 
and destruction of fermions. This is done by coupling in source and taking 
derivatives, e.g., 

δ δ δ δ¯ ¯< ψx1ψx2ψx3ψx4 > ∼ 
δη(x1) δη(x2) δη̄(x3) δη̄(x4)

|η=0 

¯� 

e−(Sgauge+ψ�ψ+¯ ¯ηψ+ψη) 

× � 

e−(Sgauge+ψ�ψ) 
(9.9) ¯

The zero-modes give �ψ0 ∼ ηψ0 and so directly a prove of η (or η̄) in the 
δdeterminant. We get a nonzero answer by solving them up with 
δη 

factor. This 

enforces the anomaly equation (for more algebraic details see Coleman). 

Scholium: 

In the context of electroweak theory, the SU(2)L anomaly equation suggests a 
mechanism of baryon number violation. I have asked you to spell this out as a 
problem. 


