Chapter 7

Chiral Symmetry

Chiral symmetry in the strong interaction (and specifically in QCD). Exploiting an
approximate, hidden symmetry to simply description of m;’s and their interaction
weak processes involving hadrons (recently) some modern processes.

Leading ideas (predicting QCD) :

1. There is a good approximate symmetry of the strong interaction under algebra
SU2), x SU((2)r (or SU(3), x SU(3)g) with SU(2)+r = isospin. Small
instincs breaking.

2. This symmetry is spontaneously violated in the ground state. Pseudoscalar
mesons (7, k, V) are collective modes (Nambu-Goldstone bosons) associated with
broken symmetry direction.

3. The generators of these symmetries appear in the electroweak interactions. In
the standard model, these hypotheses are consequences of

My, My < Ngep (7.1)
mg S AQCD (72)
<t >=<dd >=< 35 ># 0

in massless limit.

N.B. : It is very important that turning of the masses is a soft perturbation so
that we can do perturbation theory around the massless limit.

Locp = Lin—o + mytiu + madd + m3s (7.4)

Note: tricky PT due to massless particles.
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The specific realization in QCD is more powerful:

(a) Link to PQCD - corrections
(b) Concrete realization of breaking
i. Ly transforms as (3,3) + (3,3) under SU(3), x SU(3)g

ii. Contributions from anomalies as mentions above.

7.1 History and Sketch of Example Application

Goldberger-Treiman formula (1957)

M
JrNN = gAf al (7.5)

This works well, but their derivation was cheesy.
Nambu (1960-62) relate to approximate symmetry and correlate with lightness of
7 Mesons.

< Oljilm > ~  fapu (measured in m — pv) (7.6)
<0l0j|lr > ~ fap*=fam2 =0 (7.7)
<nljplm > = gau(n)ny.ulp) (+P.S.) (7.8)
0 = <nljlr> (7.9)
= gaMn — fzg=nN (7.10)
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Figure 7.1: Goldberger-Treiman.

= Goldberger-Treiman.
This is the tip of an iceberg of applications, as alluded to above.
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7.2 Meson Masses, Uy(1) Problem

Standard (Gellmann — Oakes — Ronne) GM-O-R — (Gellmann — Okulbo) GM-O will
discuss this using effective Lagrangian with

< Gris gk >= vd! (7.11)

there are low-energy states associated with slow motion in the vacuum manifold

< gri(x), gp(x) >=vX](z) (S € SU(3)) (7.12)
Write
ZiM
Y = exp( Zf ) (7.13)
Grw K
M = 7T7 —ﬁj- % [(2 (714)
K Ke -4
2
L = ?tr@“Z*@uE (7.15)
gives the properly normalized axial current.
Note
SU3)r+r flavor symmetryyX — UTXU (7.16)
SU(3)L x SU(3)r Y- USU '
No potential is allowed, since XX+ = 1, detX = 1. .
Quark masses likewise transform as Ut MYV (since they go with gr;g%).
So
AL = vTr(m} % +mI¥%) 4 highness in 9, m (7.17)
with
My,
M = my (7.18)
ms
o ((FAEATE KK R 00
AL = —FtT O 71'2 +%+7T+7T7+KOKO+W\Z% O

0 0 3+ K"K +K°K°
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X " mq (7.19)

ms
mie . = 4f—f(mu+md) (7.20)
mp, = (Tt (721
m2., = %% (7.22)
M- = 4f—U22(mu+ms) (7.23)
Mo = 4;}22(md+ms) (7.24)

Phenomenologically:

My, Mg <K Mg (7.25)

m, — myg is not much smaller than m,, + my. It is still rather poorly determined.
Gets mixed up with QED corrections.

Probably
M~ 0.4 (7.26)
mgq
My, + My 1
—_— R 7.27
My 25 ( )
T — n mixing is ~ W
From all this we get
3m? 4+ mZ. = 2(mier +mio) (7.28)
which works very well.
However, if we include a singlet
o+ 7
M = o+ % (7.29)
O' — 2_n
V6

however normalized, o — % gets no contribution from my; = extra light pseu-
doscalar mesons Has not been seen (n’ won’t do). This is the Ua(1) problem.



