Chapter 5

Anomalies

When classical symmetry can not be maintained in QF T, we say we have an anomaly.
Note, this is quite different from spontenous symmetry breaking.

We are just discussed one type, anomaly in scale invariance. Mass without mass
(dimensional transmutation). PQCD unification scale/renormalization.

Another kind, with a rather difficult flavor is connected with chiral symmetry.
Many applications:

e Eliminate extra Us(1) symmetry of massless QCD (approximate for real QCD,
but still too good).

e Eliminate I5 (axial isospin) of QCD x QCD = m,s >> m, (actually, modify
it) m° — 2y

e Constraint on what QFTs are consistent by demanding no anomalies in gauge
symmetries.

e Connections with topology/solitons.
® ---

e Hawking radiation (recent work).

A
Begin with a very concrete low basis approach. A V' V graph for mass fermions.
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Figure 5.1: Low Basis.
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This is superficially linearly divergent (note > pp — 0 in numerator). Formally,
p — p — ki in 2" term makes them cancel. But, linear divergence is dangerous —
shifts can leave finite surface terms at |p| — oo.

Careful shift:
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However the whole calculation is bogous because we could shift by anything in
internal momentum.
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" (p— p+a, ki, ky) — I (ky, k) = ée"”’”\aa + crossed (5.10)
T

e.g., choosing a, = %(l@ — k1) gives conceived V', (or CV (). This corresponds to
symmetric integration.
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Figure 5.2: Symmetric Integration.

With this choice, though, the naive axial divergence gets doubled, just cancelled.
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Figure 5.3: Axial Divergence.

1 1 :1(_(_)) b _ L +1 (5.11)
pIop—g g T Ty T |

As before, but with A\ <
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This leads to
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2 fields, 4 terms = factor .

Not a very satisfactory derivation, of course. Much better is to use Pauli-Villars
regulator, add massive spin % boson for opposite sign in loop. Take M — oo at the
end, because we do not want this in the physical spectrum.

Now we can shift with a clean conscience

1 | .1
pog =My =M =

try>ys (5.14)

where f, = (p — M) — (p — §; — M), vector is no problem.
Axial vector

g = (P-—M)—(p—g4-M) (5.15)
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This gives the same final answer, of course.



