Chapter 4

Renormalization

Cut off dependence in a few basic quantities this into redefinition:

1 Tauy T
L = —thyotou +w0(2p0m0)’¢)0 (41)
1
Ao, = A 4.2
R (42
1
wren. = w[) (43)
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ZTIZWAgren.wren.’yuqv/}’ren.Auren. = gO@ZJO’}/MwOAuO (44)
A
Gren. = OZT/J A (45)
Tppa
Z&w¢ren.¢7‘en.mren. = 77Z}O7vD07nO (46)
Z
Myen. = M (47)
Zgy

The wave-function renormalizations are absorbed into normalizing the 1-particle
states. The renormalized couplings are physical particles matrix of renormalized
states. Indeed, these are the parameters define the theory, at least perturbatively.
We fix these to experiment. Then, other quantities must be expressed finite terms
using them (and we remove the cut off).

Notice that in a gauge theory, we must use a gauge-invariant regulator to get the
simplicity. Otherwise, there are A? (no derivatives res is like), Ao A, AAA, A%, etc.
coupling appearing. We may set them to zero and entree conspiracies to record gauge
symmetry (throwing their a gauge invariant regulation).

30



31

3
Z3
ren. = go wector 3 — pt. (4.8)
T s
= Za go vector 4 — pt. < ¢ (4.9)
VT
1
727
= ZA%Y (4.10)
Lgpa
= Z (4.11)
Za : . .
7 = wuniversal (Ward identity) (4.12)
rmA

In Abelian theory are equal 1. In N.A. theory, not generally (+ gauge dependent).
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Figure 4.1: Abelian Theory.

To clarify this structure, let’s work an example. Correlation function of Bare 1),
(inverse propagator).

- ) %

Figure 4.2: Bare.

, Ak (=) () — E+ m)yt
bare:—z(p—m)—l—/ (27r)4(ze)( /ig[z;—(pk)fj—ij?])v (4.13)
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3

=ik
x \
X
Figure 4.3: Bare Diagram.
Renormalized:
bare = + %
Figure 4.4: Bare.
bare = —iZ(p — mp) + €} (no cut — of f) (4.14)
k
bare = + %
p p-k

Figure 4.5: Renormalized.

- . . 9 A d4k' 7#(}7) - k) + m)’yu
bare = —i(p—m) +ie / @) k2l(p — K)E — id (4.15)
S; = 2n° A (4.16)
bare = —i(p—m)+ % / * adnk? /;[Q(gj —_/jii t L:;] (4.17)

We are going to keep only the divergent part. We shall subtract by normalizing
the log divergence (only) at p.

linear + log divergent (4.18)



linear

/ Aok, =
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/ Ak — Lok,
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Putting it all together (as discussed):

bare =

Finite matrix d't’ at

Ip| =

mg ()

Check Ward identify:
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(4.33)

(4.34)

(4.35)



34 CHAPTER 4. RENORMALIZATION

Figure 4.6: Ward Identity.

. . dk =2 k> o

= —iey, — ie® / 2 Iﬁ%ﬁ;ﬁ (4.36)

. ie?
= %~ g3 InA (4.37)

2

1 e A
ZTzZ;a,L;A = 1 + @ ln E (438)

e2 A
ZTv,EwA = 1- @ In ; (4.39)

Check gauge-invariance of mpg(u):

S

Figure 4.7: Added Stuff.

A d'k ok, (P — F A+ m)v
4.4
added stuff o O 20— k)2 (4.40)
—m

need o< P (4.41)
log 20y | ! dif (-2 + y4m) (4.42)
L [ BRI
L1 A dQdk(=)K(2pk)E?)
- = / x (4.44)
A L 3
_ 8_;2/ ap 1P li)pk —p+m (4.45)

Effective mass: m/z(11) equivalent to m%(ug) if same mg, A
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mp(p) m%(m)
1-32mA 132 A (446)
8m2 7 g 812 " g
e2 A
m/p(p) 1-3& L
! e? 12
mg(p) e?

Renormalization group: N.B. : €2 too.
Physical significance:

1. With normalization at u, no large loop for processes with parameter a ~ .

2. Internally, not rotate for u to 2.

Anticipate:
dg(n) 3
= —b by >0 4.50
dIn 1 0g” (bo ) ( )
G _ o (4.51)
dt
1 1 W
- = 2hyIn (4.52)
*(1)  g*(mo) 4o
Tt = eToaio) - (4.53)
Ho
wo= [uoe%ogé(uo)]e%o;?(u) (454)

Take p — oo, dimensional transmutation perturbative coupling.

Lattice: Given %, determine p o< i Measure % fixed, independent of u as
g — 0.

Good news: Check approach to continuous limit. Bad news: Decreasing g(u)
required exponentially bigger lattice.

With opposite sign for by, coupling blows up as 1 — oo(a — 0), no limiting theory
guaranteed.
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Running coupling and dimensional transmutation:

Figure 4.8: Running Coupling

Ay = o (o>0) (4:55)
dgs o 4.56
dlnp ‘ 0
1 1 12
9°(n) ¢(uo) " o |
Bare charge — 0
L T PErrE: (4.58)
Ho
,Uo — eQbOng(u) /J,e 2bg 92 (110) (459)
Identify from p — oo limit [finite].
More accurate:
dg
= —byg® + b1 g° 4.
dlnﬂ 0d + 19 ( 60)
dg% = 2by— 2b 1 (4.61)
dlnp ’ 19% |
du 2by
du oy 20 4.62
i« om 2 (4.62)
v — 2t (4.63)
du by
du b 4.64
dt O bt o
b
u o~ Qbot_—llnt (4.65)
bo
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1 b
— =~ 2%yl L £ (4.66)
g% (1) po bo ho
1% b1 1
~ 20pIn — — —1 4.67
o po  bo " 2byg* (4.67)
1 1 Loy ! (4.68)
n g n — — N .
Ho B g T 282 " 2byg?
1 b1
fo ~ pe 2092w [———]% finite as p — 00 (4.69)
’ g% (1)
Relation to lattice (fundamental): Hold p fixed (reference mass)
1 S 1]
a(g) ~ — ~ e 2b092 [—2] ng — (470)
M g Ho

Small a corresponds to small g. N.B.: Exponential dependence. Test: Physical
masses stay constant as ¢ — 0. Explicitly: Measures correlation fall-off =" where
n is the lattice sparcing.

This is e M with L = an for M = %

e = eaon (4.71)
by
o510

—  pge2bos® T T\ (4.72)

Fixing po, we see A — 0 as g — 0. Large correlation lengths, variating of lattice
artifacts. Alternatively, aM — 0 without asymptotic freedom we would be lost here,
in tertudation theory. Long correlation lengths can occur at critical points. To nail
things down let’s look at this more closely:

dg o
Ty —bo(g — gc) (4.73)
In(g —gc) = —bolnp (4.74)
g(,u) — 9gc _ (@)bo (475)
9(ko) — go Iz
9(1) = go \ -
= _— 4.76
: MO(Q(MO) —9c ( )
so we have, g(u) — go
—nA —2ng
e = e @ (4.77)
A
M = = 4.
: (4.78)
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B (9

Fixed Point

S

X/

Figure 4.9: Fixed Point

lei 9(p) — g9c o
alglw) i o g(to) — go (4.79)

M = % fixed = A\ — 0, % > a. Alternatively, IR fixed points, but these do not
support non-zero masses.

Antiscreening as paramagnetism:
Vacuum polarization:

E.D o €eFuF* 4.80)
B.H o« u 'F;F9 4.81)

In reality
(4.82)

epn =1
either is varying g.
Antiscreening (e < 1) = paramagnetism (@ > 1) magnetism is easier to think

about, since particles do not get produced.

1
Eass. = — B? 4.83
o = 55 (4.53)

But zero point energies, shw (Bose), —3hw (Fermi) would like to throw it out,

but it is field-dependent and cut off dependent.

Interpretation using running coupling:
Wilson approach: Contribution of modes between g + p (say p > pg) is
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— —plnp? (4.84)
Ho
1
E = B? (4.85
29*(ko) )
——
cut of f at uo
1 N n2
= (————-nln—)B 4.86
(292(M) Mo) (4.86)
cut of f at p

Result and physical interpretation:

1
" 96m2

To aid in physical interpretation, pick a particular direction (e.g., 73) in internal
space for B, and pretend it is electromagnetism.

First term from orbital diamagnetism (Lambda). Note 2 for polarizations, — for
fermion.

N.B. This applies to O—point energy of virtual particles. Real particles do not have
this.

Second term from spin paramagnetism (Pauli). Note g—factor 2 (also for vectors),
— for fermion, % ratio as in solid state.

[—{T(Ro) — 2T (Ry + 2T(11))}] + 961

T2

[3{—2T(Ry +8T(R1))}] (4.88)

2
:2*_% =4 (4.89)
2

AF comes from gluon paramagnetism. Reference: F. W., RMP 71 S85 (Ceturean
Issue).

Learning from QED: With these insights, we could extract the non-Abelian (3
function from the Abelian one.

Numerical value:

QCD: T(R) — f% (4.90
T(R) = 3 (4.91)
1
by = 967r2[+2£ —2x 3+3(—2§ +8x%3)]
1 1 2
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by > 0 for f < 16. Gluons heavily dominate for f = 3.
Application for unified theories:

SU(3) —8F 466 (4.93)
1
SU(2) F( :ﬁl/ X \4/ X 3 )+ 44
fermion factor — number of doublets ~~
Taoublet
1
= —8F+44 5 Higgs (4.94)
2
2 1
U1l normalized charge : 2 — 4.95
) g L w e
-3
2 L1 2 2 2
Zq = F(§ + @(3 X 47+ 6(—1)" 4+ 1(—6)%)) (4.96)
= op 28 _gp _ 15 Higgs (4.97)
3 equations: constraint, ., g,
1 ; 1
o = 0't,+ — (4.98)
1 1
— == = (0=t 4.99
9% 93 ( ) (4.9)
Note: unchanged by complete multiplets (no F')
1 1
g — g b3 _ b2
— 4.100
e o
Fixing scale: note exponential dependence
1 1
272 1 1 1 1
t, = 29 — — = — 4.101
B—b bgy g3 bgr b3 (4101)
I kv A i e 1)+1b3+62<1 L) (4.102)
B E BB 205 g3 208 -0 gs g3



4.1. SUSY MODIFICATIONS

4.1 SUSY Modifications

1. Gauge Modification

2R 1= 2R,
—6R% — 24R,
1 9
R: = 11 X 2 xX = = factor—
2 N~ -~
group theory  chialitic ~
majorna
66 — 54
44 — 36
2. Higgs Modification
2 doublets

fermion partner

-1 — 2x(=142—6) like 6 Higgs doublet
——

X

N|=

3. Matter Modification

X 3 by same reasoning

Example: N =4 gauge field. 4 adjoint fermions. 6 Higgs.

diamagnetism : 2 —8
paramagnetism : 8§ —8

Numerical aspects:

b — b 22+ 3 75
P2—b 44—+ 146
SUSY:
b3 — b? 18+ 8 35

—b  36+6(-14+3) 58

B_p2 -

41

(4.103)
(4.104)

(4.105)

(4.106)
(4.107)

(4.108)
(4.109)
(4.110)

(4.111)

(4.112)

(4.113)

(4.114)



CHAPTER 4. RENORMALIZATION

1 1

S _> S

22+ 1 18+ 9
0.044 — 0.048

Raising scale looks small but appears in exponential (p—decay).

b*+ b 100+ 16F — 5 pg 62— 5 41 53
BP—b2 2243 Co2+3 1577
SUSY:
b® + b 24F — 3 p_
+0* 90+ 3r=33 _ 460

b — b2 22+ 3 5

b%: (very little remaining)

1 1
44—8F—§:19§—>36—12F—3:—3

Other applications:

™3 from minimal SU(5)
ms
Vacuum instability and Colman—Weinberg:
(P
PA-)
i
interpret as energy from extra nodes.

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

Too many fermions. moment y, field strength ¢ (as in our magnetic calculation).

Weak Coupling Massless

L

Figure 4.10: Weak Coupling Massless
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Table 4.1: Running of coupling

I \ SM MSSM [
SU(3)bg 66 — 8F 54 — 12F
SU(2)pz 44 —-8F — %1 36-12F -3 nearly flat
U(1)p —8F — 3 —12F - 2
é_é b3—b? ; ;
o1 =mr 0.514 0.604 agrees with expectation
91 92 . .
ty = 4753_;25 0.044 0.048 larger scale
important for p-decay
close to Planck scale
N e
e e e 2.73 0.60 families and extra stuff
appear here
bigger coupling desirable?

Running of coupling — summary sheet

Other applications: N = 4 SUSY, glue, 4 Majorna fermions, 6 scalars. Dia: count
DOF. Para: 4 fermion, =0

Normal SU(5):

M _ 1 at uni fication (4.122)
m,
Normalizes to
M 3 (4.123)
m;
Vacuum instability
)\(ﬂ)cp4 negates (AF) contribution — )\(g)go4 from fermions (4.124)
Ho Ho

Variational interpretation?

<@ > aj,ay (4.125)

mix mode in |k|-dependent manner. C.F. our magnetic field calculation.
Colman-Weinberg:

Electroweak breaking through leavry sTop. t instability ulicrod when ¢ comes in.
PQCD:

Simplest case: e"e” — hadrons
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Figure 4.11: Vacuum Instability

vV©®)

Weak Coupling

m=0 (0]

pass through zero

Figure 4.12: Spontanous Symmetry Breaking

o(p, g™, 1)
. 90 1) o (Ap, g(Aw), Apw) (4.126)
1
~—_——

expand perturbutively

Figure 4.13: Expand Perturbatively.

Potential problem from soft and collisions divergence. They do not occur in in-
clusive qualities.

Jet phenomena: Observation, heuristic explanation, hard scattering, rate. Sterman-
Weinberg comes, energy bite. Stiull no scale — same argument. Extremum pattern.
Hadmic gets over 6 nodes of reguitode.
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Figure 4.14: W-Exchange.

OPE, DIS: W-exchange.

Nodes up to k? ~ m?2.

Simplify to

Different Q #s
Figure 4.15: Simplify.

Operator versions:

T () S 0 2)04(0) (4129)

Singularities of C' ordered by dimensions of O; keep low dimensions. C;(x,g, i)
includes renormalization of O.

Cilwng ) = [3+ﬁ< )3—79@10:0 (4.129)

91 , dg
Oi(A_1I7g(M0)7MO) — CZ(ZL’,g(/\,uO))e fgo Vo5

= Gle.g0m))(d) (4.130)

One can also have operators mixing. For DIS, light—cone singularities (tracing
quarks and glouns) are important.

J ( )J( —f TS om0y, (4.131)

but not individual component.
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Twist = dimension — spin

<O > — p'p”--- (symmetric) (4.132)
o g
(22)? is what appears.
g° — o0 (4.134)

% finite (= 1).

QCD has twist—tor families of operators (respectively chirality).

Jer Vs - Van gy D=34+n—-1,J=n (4.135)
Gy Vay *Va,, Goy  D=4+n-2J=n (4.136)

First family includes nonsinglets, currents. 7, also appears (but not by itself).
Twist J governs J moment of appropriate structure function.

Many testable predictions: Parton model sum rules and g¢* correlations. CG
relation and g* correlations. E: Max with o order correlations. B; scalar deviations.



