
Chapter 2


Abelian Gauge Symmetry


As I have already mentioned, local gauge symmetry is the major new principle, beyond 
the generic implementation of special relativity and quantum mechanics in quantum 
field theory, which arises in formulating the standard model. It is, however, a rather 
abstract concept, and one whose relevance to the description of Nature emerges only 
after considerable analysis. One could simply introduce local gauge symmetry as 
a mathematical postulate, but that would make its significance seem obscure and 
its discovery miraculous. Since our goal is to construct a rational understanding of 
Nature, it is appropriate to proceed differently. Accordingly I will work up to the 
general abstract concept through enlightening special cases, and say a few words 
about the historical roots o f the ideas. 

Physicists first encountered gauge symmetry as an esoteric feature of the Maxwell 
equations of electrodynamics. It was found that these equations took on a simpler 
mathematical form, and could be more easily solved, if one introduced potentials. 
The electric and magnetic fields, which form the observable content of the theory, are 
constructed as certain combinations of the time and space derivatives of the potentials. 
The correspondence between fields and potentials is not unique, in that different 
potentials can correspond to the same fields. Gauge symmetry is a family of functional 
transformations among the potentials that leaves the field strength unchanged. The 
charge and current distributions, which provide the source terms in the Maxwell 
equations, are under gauge transformations. 

In the general, classical continuum form the Maxwell equations the physical mean­
ing of gauge symmetry is quite obscure. It becomes somewhat clearer if we work in 
a manifestly (special) relativistic formulations. 

The only simple relativistic invariant associated with a structure-less point particle 
is the interval of proper time dτ , where 

2dτ 2 = dt2 − d�x (2.1) 
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This motivates the action 

2Sfree = −m dτ = − dt m
√

1 − �v dtLfree (2.2) ≡ 

with Lfree = −m
√

1 − �v2, where v is of course the velocity. This leads to the 
momentum 

vj 

pj = 
∂Lfree 

= m (2.3) free 2∂ẋj 
√

1 − v

which has the expected form for a free particle, and identifies m as the mass. 
(Note that the spatial momentum pj = −pj.) 

To couple this particle to a “vector” field Aµ(�x, t) – whose components we shall 
from here on call potentials – we add to the action a term 

Sint. = −q Aµdxµ (2.4) 

corresponding to the Lagrangian 

dxj 

Lint. = −qA0 + qAj . (2.5) 
dt


The momentum is now, with L ≡ Lfree + Lint.,


pj = 
∂L 

∂ẋj 
= m 

vj 

√
1 − v2 

+ qAj (2.6) 

and 

dpj 

dt 
= 

d 

dt
( 

mvj 

√
1 − �v2 

) + q 
∂Aj 

∂xk 

dxj 

dt 
+ q 

∂Aj 

∂t 
. (2.7) 

Since 

∂L 

∂xj 
= −q 

∂A0 

∂xj 
+ q 

∂Ak 

∂xj 

dxk 

dt 
(2.8) 

the equation of motion dpj 

dt 
= ∂L 

∂xj becomes 

d 

dt
( 

mvj 

√
1 − �v2 

) = q(− ∂A0 

∂xj 
− ∂Aj 

∂t 
) + ( 

∂Ak 

∂xj 
− ∂Aj 

∂xk 
) 
dxk 

dt 
(2.9) 

Separating out the terms on the right hand side which contain the velocity, and 
adopting vector notation, we can write the equation of motion as 

d�p 
= q( � �E + �v × B) (2.10) 

dt 
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with 

Ej ≡ − ∂A0 

∂xj 
− ∂Aj 

∂t 
(2.11) 

and 

Bj ≡ �jlm ∂Al 

∂xm 
(2.12) 

Identifying � B as electric and magnetic field strengths, we thereby arrive at E and �

the Lorentz force law for a particle of mass m, charge q. 
Note that with this identification two of the Maxwell equations, viz. 

∂Bj 

= 0 (2.13) 
∂xj 

∂El ∂Bj 

�jlm + = 0 (2.14) 
∂xm ∂t 

are satisfied identically. Historically, this was one main motivation for introducing 
the potentials A0 and Aj. Another was their appearance in the expressions for the 
conserved energy and momentum, respectively, of charged particles. Here we have 
seen how naturally potentials arise in the quasi-geometric framework of relativistic 
point particle kinematics. 

The transformation 

A� = Aµ + ∂µχ (2.15) µ 

where χ is a smooth function of space and time that vanishes at infinity, manifestly 
leaves the action Sint. invariant, as long as the world-line has no ends. Indeed, one 
can simply integrate by parts in 

� 

dxµ∂µχ. Equation 2.15 is the transformation that 
defines local gauge symmetry. Since local gauge symmetry leaves the equation of 
motion unchanged, it must leave � B unchanged, as of course one can verify E and �

directly. 
Clearly, the requirement that the world-line of a charged particle should have no 

ends is closely related to the conservation of charge. More generally, the necessary 
and sufficient condition for an action 

Sint. = − d3xdt Aµj
µ (2.16) 

to be invariant under local gauge symmetry (i.e, with the gauge function χ van­
ishing at infinity) i s the “continuity equation” 
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∂jµ 

= 0. (2.17) 
∂xµ 

To construct the quantum theory it is important to consider the Hamiltonian 
formulation. The prescription 

H = � � (2.18) p· v − L


together with our formula for �
p and L leads to the numerical expression 

m 
H = + qA0 (2.19) 

2
√

1 − v

but to consummate the formalism we must eliminate v in favor of p. Fortunately, 
by grouping the momentum with potential and squaring we find 

1 (� �
= (2.20) 

2v m1 − 2 
− 1 

p − qA)2


and after some simple algebra we derive


H = m2 + (� �p − qA)2 + qA0. (2.21) 

The appearance of square root here leads to difficulties in quantization. In order to 
implement the commutation relations, or (more heuristically) wave-particle duality, 

p → −i∂� and implement the Schr¨one would like to make the substitution � odinger 
wave equation Hψ = i∂ψ . But that substitution renders the Hamiltonian, with its 

∂t 

square root, into a nasty, nonlocal operator. One could try to work with the square of 
the Hamiltonian, but then there would be negative as well as positive energy solution. 
It was considerations like these that lead Dirac to Dirac equation. 

Since an adequate treatment of relativistic quantum theory in any case seems to 
require that we pass from a point particle to a quantized field description of the charge 
matter, for present purposes it is preferable to retreat to the non-relativistic limit of 
H, 

H = m + 
p − qA)2 

+ qA0. (2.22) 
2m 

Now there is no difficulty in making the above-mentioned substitution and formu­
lating the Schrödinger wave equation, which becomes 

(−i∂� − q �∂ψ A)2 

i = (m + + qA0)ψ (2.23) 
∂t 2m 

(Of course, the constant term m on the right hand side can be eliminated by 
absorbing a factor e−imt into ψ.) 
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For the gauge transformation A� = Aµ + ∂µχ on the potentials to leave the µ 

Schrödinger equation invariant, it must be accomplished by the transformation 

e−iqχψψ� = (2.24) 

on the charged fields. Note that the value of charge q appears explicitly in this 
transformation law. Note also that the complex nature of the field is essential, since 
the transformation involves multiplication by a phase factor. 
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2.1 Gauge Symmetry for Quantum Fields 

Since quantum fields associated with charged particles can create one-particle states 
whose wave-functions obey the single-particle Schrödinger equation, we should expect 
that under a gauge transformation such fields transform as in Equation 2.15. 

It is possible and proves fruitful to consider reversing the logic, by taking the 
symmetry law as primary. Indeed, suppose that we have several quantum fields 
ψ1, ψ2, with charges q1, q2, . Then the condition that an interaction term of the · · · · · · 
general form 

ψp1ΔL = 1 ψ
p2 (2.25) 2 · · · 

which may also contain derivations, should conserve charge is that 

p1q1 + p2q2 + = 0 (2.26) · · · 
for the term destroys p1 particles charge q1, p2 particles charge q2, and so forth (or 

creates an equivalent number of anti-particles). Putting it differently, the necessary 
and sufficient condition for charge conservation is invariance under the symmetry 

e−iqnχψ� = (2.27) n 

where χ is a real number variable. (Complex numbers are not allowed. They 
would resale the magnitude of the fields. While they might leave the classical action 
invariant, they generally spoil the commutation relations.) If there are derivative 
terms, we cannot allow χ to be a field depending on space and time, because the 
derivatives ∂µψn transform as 

∂µψ
� = e−iqnχ(∂µχn − iqn∂µχψn). (2.28) n 

The complicated inhomogeneous form of this transformation law makes it diffi­
cult to form invariant interaction terms containing derivatives. But in order to obtain 
sensible equations of motion it is necessary to have derivative terms in the action. 
So if we want to promote charge conservation to ]it local gauge symmetry, permit­
ting transformations in which χ depends on space and time, we must modify the 
derivatives. 

A suitable modification is suggested by our earlier discussion of the point particle 
Hamiltonian. We define the covariant derivative operate Dµ to act on a field ψn of 
charge qn according to 

Dµψn = (∂µ + iqnAµ)ψn. (2.29) 

Then if Aµ transforms as in Equation 2.15, we have 
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µ)e−iqnχψnD� ψ� = (∂µ + iqnA
� (2.30) µ n 

= e−iqnχ(∂µ − iqn∂µχ + iqnAµ + iqn∂µχ)ψn 

= e−iqnχDµψn. 

Thus the covariant derivative of ψn transforms in the same way as ψn itself, and 
there is no difficulty in using it to form invariant interaction terms. 


