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Chapter 11 

Lattice Gauge 

As I have mentioned repeatedly, this is the ultimate definition of QCD. (For elec­
troweak theory, there is no satisfactory non-perturbative definition). I also discussed 
before the process of dimensional transmutation, you should refer back to this after 
we have gone through the explicit construction of LGT. 

Agenda here: 

1. Formulation of pure gauge theory. 

2. Formulation of fermion theory, doubling phenomenon. 

3. Confinement in strong coupling 

Euclideanize, introduces 4d cubic lattice. On links introduce (for QCD) SU(3) 
matrices Un1,n2 . 

site lables 

They should be thought of as parallel transporters, i.e., solution of the equation 

�µU = 0 (11.1) 

= ∂µU + igAµU (11.2) 

U = P (ordered integral) (11.3) 

Thus, if, say, 

ψ(x) = U(x, x0)ψ0 (11.4) 

then 

�µψ = 0 (11.5) 
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Note that there is path-dependence in this definition of ψ(x) and the parallelism 
is only along the path. 

Let me emphesis, though, that this is only a mnemonic, for relating to the (formal) 
continuous theory. LGT itself does not know about A. 

Un1n2 = U−1 
n2n1 

(11.6) 

We will enforce a gauge symmetry 

Un1n2 → Ω(n1)Un1n2Ω
−1(n2) (11.7) 

with site-dependent Ω(n) ∈ SU(3). Thus, the symmetry group is SU(3)Z4 

The simplest nontrivial local invariant is the trace around a plaquette 

Figure 11.1: Plaquette. 

trUn,n+ˆ x,n+ˆ y x+ˆ y y,n ≡ tr�n,xy (11.8) xUn+ˆ x+ˆUn+ˆ y,n+ˆUn+ˆ

For small fluctuations this is ≈ 3 
This inspires the action 

c �

S = (3 − tr�) (11.9) 
g2 

plaquettes 

1where, c = 
24 

to match continuous conventions. 
To be completely explicit we should also specify the measure. It is the product of 

Haar measures 
� 

links[dU ] 

[dU ] = U−1dU ∧ · · · ∧ U−1dU (11.10) 
8 times 

� U−1(x)dU(x) 
= dxi det || − use normalized basis (11.11) 

���� ���� 
|| 

∂xi 
group manif old jacobian � �� � 

parametrization of 3×3 traceless Hermitean 

Crucial property is 
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[d(U0U)] = [dU ] (11.12) 

thus 

[dU ](non − singlet) = 0 (11.13) 

e.g. 

� � 

[dU ]U = [d(U0U)]U (11.14) 
� 

= [dŨ ]U−1 
0 Ũ (11.15) 

� 

= U−1 
0 [dU ]U (11.16) 

� 

[dU ]U = 0 (11.17) 

Note: 

1. For small fluctuations, first non-trivial term is quadratic. Thus it must match 
continuous 

� 

trGµν Gµν 

2. Everything is numerical – no units (→ dimensional transmutation). 

3. Everything is finite. 

4. Everything is algorithmic. 

5. No gauge fixing required. 

Fermions (quarks) live on sites they transform as 

ψn Uψn (11.18) →
The simplest kinetic energy is 

1 � 

ψ̄n+δγδUn+δ,nψn (11.19) 
2i 

n,unit displacement,δ 

(i.e., γˆ = γ1, γ−ˆ = −γ1,x x · · ·) 
Consider U ≈ 1, plane wave 

ψn ∼ eip.nS (11.20) 
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(p.n = p1n1 +p2n2 + p3n3 + p4n4). 

integer 

We have 

1 � 
¯ ¯(ψn+ˆ x)γˆψn sin pxγˆ (11.21) x − ψn−ˆ x → x

2i n 

so inverse propagator γi ∼ pi low energy states (= poles of propagator) for 

(γi sin pi)
2 = 0 (11.22) 

i 

= sin 2 pi (11.23) 
i 

This occurs near pi ≈ 0 – smooth fields, but also for any pi = π 
Near pi = π the direction of E as pi is reversed, so chirality is opposite. 
This introduces 16 branches, where we wanted 1. You can scheme this effect but 

not eliminate it, by simple modifications. Recently more basic methods, involving 
adding considerable additional structure (≈ extra dimensions, 4d domain wall) have 
emerged. 

The brutal way (Wilson) is to add 

1 � 

ψn+δUψn + 4 ψnψn (11.24) −
2 

n,δ � �� � 

4−cos px−cos py−cos pz−cos pτ 

This eliminates the small energy at any cos p = −1. It also, of course, violates 
chiral symmetry explicitly. The 4 must actually, be tuned, in an interaction dependent 
way, to get a light branch. 

Massive quarks will stay put, so adding a massive quark-antiquark pair separated 
at distance R for time T inserts U matrices. 

T 

R 

Figure 11.2: RT. 

To determine the potential therefore we evaluate 

c 
2 
� 

� 
plaquette tr 

� 

[dU ]
� 

e 
−

g

e−V (R)T = lim f (11.25) 
2 
� 

� 
T→∞ � 

[dU ]
� 

e
−

g
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In story coupling, expand the action 

c �
2ge

− c 
�

D 
= 

�

(1 − � · · ·)) (11.26) 
g2 

The 1 term works fine in the denominator, but the integration over links appearing 
in the large loop will vanish. To get a non-zero answer we must pair these links. 

Now 
this 
is 
the 
problem 

Figure 11.3: Sheet. 

Keep going until the whole sheet is filled in. This gives a factor 

1 
e−V (R)T 

2 
)RT (11.27) ∼ ( 

g

so V (R) ∝ R. 
Linear potential (⇒ confinement) is manifest at strong coupling. Of course, the 

continuous theory – fine lattice spacing – corresponds to weak coupling, as we saw 
earlier. If there is no phase transition, we get confinement there too. This has been 
shown numerically for QCD. QED (U(1)), on the other hand, has a phase transition. 


