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12.4 Problem Set 4 Solutions

1. A nice derivation on the theoretical lower bound on Higgs mass (note exper-
imental lower bound is py > 120GeV by now) can be found in G. Attarelli,
G. Isideri, Phys. Lett. B337 pl41 (’94) (available on the SPIRES). This uses
two—loop corrections and the result for (u; ~ 174GeV') as a function of cut-off
scale A is as follows:
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Figure 12.41: Lower Bound.

I will sketch the argument, see the paper for details.

Tree level Higgs potential is

 pol? Aol

V;free: 9 + 24

(12.164)

where we fix A\g and i at renormalization scale pg = 1 = v ~ 245GeV (at weak
scale).

As p — p+ 6, Higgs field strength scales as ) — O(1 + dn) and X — A + 6.

Accordingly the renormalized potential is

Vien = 52 M)(1 + n(10))0)’ (12.165)

For one-loop corrections we can write

A

log =
14 0n~ el = exp[—/ o y[t]dt] (12.166)
O
where
§ §
y=tp= 0T - % (12.167)

o 0 log qu ot
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These one-loop effects can turn the tail of Vj...()) in downwards for large ()
hence Ve, () may become unstable.
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Figure 12.42: V...

From Equation 12.165 the condition for stability is clearly

A(p) >0 (12.168)

Thus we shall look at how A evolves:

(—6x + 26¢) (12.169)

Figure 12.43: 4, Equation 12.169.

and dy is Higgs self-renormalization

Q

Figure 12.44: §y Equation 12.169.

We just draw contributing diagrams and give the result:
take only top quark.

— 0y (from log—divergent pieces)
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+ 5 permutations +

Figure 12.45: Contributing Diagrams d,.

Figure 12.46: Contributing Diagrams dgp.

take only top.
— dp (from log—divergent pieces)

Therefore,( see above mentioned paper) for the result. Actually I will quote
two—loop result:

a1
dt 1672

9 27
[4X% + 12)g2 — 369} — ING? — 3Ag2 + 59?95 + Zg;‘] (12.170)

where g, is the Yukawa coupling for top quark, ¢g; and g are U(1)y and SU(2)w
coupling.

We have

gilpo) =~ (a+d(no)) (12.171)

Ae(po) = 2 (a4 6x (o)) (12.172)
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at o = weak scale ~ 100GeV. (note that the funny factors of 3 in - is

H
coming from my unusual Vi, definition).

Therefore, we see that A\ can become negative, hence Vi, unstable for partic-
ular values of A, m? and m?%. To find the range of m?% for which A > 0 fix
m? ~ 174GeV (ignore QCD corrections). Then solve the above equation for %
numerically and the one gets the range as shown in Figure 12.41.

2. Consider

1
L[] = 5@@8"@ — V(D) (12.173)
Suppose we expand around < () >= v(x) where V(0) looks like
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Figure 12.47: V().

For simplicity lets take

V(D) ~ wh*+C (12.174)

with w < 0.

The ground state is a coherent state such that, for

3 o Jgn A~ A
0(z) = /%ﬁ(akem +afe ™) =0, +0_ (12.175)

~ &Pk 1 o
0.@e> = | e le > (12.176)

Lets consider a 0 + 1 dimensional system for simplicity:
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- 1
H = wld'a+ 2] (12.177)

<EHlE> = 7 (12.178)

Solution to equation alé >= €£|¢ > is |€ >= €’ |o > in this case

1 ' 1
< ¢|H|¢ >=w < ole**(a'a + 5)65“ lo >= w(&* + 5)652 (12.179)

Consider an excitation:

d d d d
< elatall >= i < €IHIE > e = oo

J€ d (€€ + %)eff’w >< E|H|E >

(12.180)

Excitation get lower and lower energy (straightforward) since w < 0 (for classical
unstable potential).

This reasoning is easily generalized to more non-trivial potentials which exhibit
non-stable behavior classically and to 4D QFT, in which case

&k1
(271')3 V 2]€0

3. (Thanks to Guide Festuccier) Observed value of

€ >= 6xp[/ £(k)e®Tat]|0 > (12.181)

mpy
mf"‘“z ~ 1.62 (12.182)
Both in supersymmetric and non-supersymmetric GUTs b and 7 are in the same
multiplet and get the same mass through Higgs coupling, hence

my

m, |“HGUT

~1 (12.183)

To obtain the value at © = p, we should run the Yukawa couplings down to
weak scale. One can ignore Yukawa couplings of other matter except top-quark:

MSSM:
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ilnAt = TN - gl (12.184)
dt 1672 w
d 1 S
%mAb = 1o — =6 + A2 =gl (12.185)
d 1 2 2 2
%mAt = 1o (607 —3X; =D g (12.186)

t = () (12.187)
e

where g; are ((U(1), SU(2), and SU(3)) coupling for i = 1, 2, 3 respectively and
the coefficients are:

MSSM:
13 _ 16
L= (2,3, = 12.188
6 = ($:33) (12185)
7 16
L= (—,3,— 12.1
¢ = (1233) (12189)
9
¢ = (53,0 (12.190)
SM:
179
i = (=, - 12.191
Gi (207478) ( 9 )
, 19
o= (=, 12.192
C’L (47 478> ( 9 )
99
o= (5, = 12.1
CZ (47 4’0) ( 93)

Subtract equations for A\, and A\, and neglect \, with respect to A\; to get

MSSM:
d. M, 1 16 20
or—1 ~ 2 — —g> 2 12.194
T H(AT) 47T(At XL 1591) (12.194)
SM:
d . N 1
2m m(A—T)2 ~ E(}\g — 893 + 247) (12.195)
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One straightforwardly gets

MSSM:
my G zaqy as(p,) s
_ - . e 1(,7\—2 ——— )9 12196
" 1) = o) (12.190)
(ignoring O(g?) with respect to O(g3)).
SM:
@(M ) _ (6716%7\’_ J(HGUT) AZdt! ag(uz) % (12 197)
m, as(pcur)

We have to obtain a3 = as = a1|gur in MSSM vs. SM.

This is easily done by looking at one—loop running of MSSM and SM couplings
and their unification at ugyr, see for instance R. Mohapatra hep-th 9801235
r2.

1

oM~ % (12.199)
1

gt o~ o (12.200)

One obtains

my

e (us)lssa = exp(= 16 2/)\ Marssar X 256 (12.201)
") = ex /)\ Ysar x 2.51 (12.202)
m. Hz)lsm = p(— 1672 SM .

The difference mostly depends of the running of top-Yakawa coupling in MSSM
vs. SM. According to R. H. Mohapatra, (“Suppersymmetry and Unification,”
Springer-Verlag, 2003) ™ ~ 3 in SM which is bad as % ~ 1.62 in reality and,
zb ~ 2.3 in MSSM. But the latter result is model-dependent. Especially on the
particular breaking mechanism.



