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12.2 Problem Set 2 Solutions 

1. • I will use a basis m, which 

ψC = iγ2ψ∗ = Cγ◦ψ∗ (12.47) 

We can define left (light) handed Majorana fields as, 

ω = ψL + (ψL)C (12.48) 

χ = ψR + (ψR)C (12.49) 

so that 

ω = ωC (12.50) 

χ = χC (12.51) 

Note that 

(ψL)C = (ψC)R (12.52) 

(ψR)C = (ψC)L (12.53) 

Then 

−µRψψ = −µR(ψR(ψR)C + ψCψR) (12.54) R

−µLωω = −µL(ψL(ψL)C + ψCψL) (12.55) L 

are the right (left) handed mass terms for Majorana fields. 

• Generalizing to N flavor, i, j = 1, · · · , N , we have −µijψCiψj + h.c 

Using above definition for C and anti-symmetry of Grassmann variables 
are sees that µij can be taken as symmetric. 

• For one flavor case general Dirac and Majorana mass is 

� � �

ω 
m 
2 

� � −µL 
m 
2ω χ (12.56) 

χ−µR 

Since 
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m 
(ωχ + ψω) = m(ψLψR + ψRψL) = Dirac Mass (12.57) 

2 

One can diagnolize this by a unitary transformation to get the eigenvalues 
2 

(in case µL = 0 for instance) µ = µR, m
µR 

•	 This is an example of the “see–saw” mechanism. Although one can not 
right down relevant (dimension ≤ 4) Majorana mess term in standard 
model, one can in some GUT’s, e.g. SO(10). Therefore, the natural Majo­
rana mass ∼ O(1015 Gev), which is the GUT scale in typical theories.Then 
above mechanism would give a LH fermion with a tiny mass 

2m (100 Gev)2 

∼ 10−2 eV	 (12.58) 
µ 

∼ 
1015 Gev 

which is consistent with observation of scalar neutrinos. Note that for the 
typical Dirac mass µ, I take ∼ 100 Gev since they are obtained by Higgs 
much at weak scale. 

•	 Same mechanism works for N > 1 flavors in which case one diagonalizes 
the general mass make it with a unitary transformation. 

2. (a) Let’s begin with listing the matter content of Sµ indicating the hyper­
charges:


Quarks:


uL cL tLρL = 
dL 

, ,	 (12.59) 
bLsL1 1 1 

666 

u uR, cR, tR	 (12.60) q =
2 
3

1 
3 

R 

d dR, sR, bR	 (12.61) q = 
R −

Leptons: 

νeL νµL ντL lL = , ,	 (12.62) 
τLeL µL1 1 − 1 

2
− −

2 2 

lR −1 = lR, µR, τR	 (12.63) 

Higgs: 
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Φ =	
∅

(12.64) ∅◦ 

We want to find a term with B = 0. Clearly this term should involve 
quarks. The restrictions are: SU(3) color, SU(2) weak, U(1)Y and Lorentz 
invariance. (l, ρ, τ separately are not fundamental). SU(3) requires three 
combinations: 

3 ⊗ 3 ⊗ 3 = 1 + 8 + 8 + 10 (12.65) 

3∗ ⊗ 3∗ ⊗ 3∗ = 1 + 8∗ + 8∗ + 10∗ (12.66) 

3 ⊗ 3∗ = 1 + 8 (12.67) 

Last one can not violate B hence discarded. First two are ρρρ (or ρcρcρc) 
and ρρρ (or ρcρcρc) which are not Lorentz invariant unless we include 
another fermion which should be a lepton in order not to spoil SU(3)color. 
Hence the lowest dimensional operators which has B = 0 are ∼ ρρρl with 
dimension 6. 

(b) There are four types: ρρρl, ρ∗ρ∗ρ∗l∗, ρρρl∗, ρ∗ρ∗ρ∗l. First two does not 
violate B − L, last two does. This problem amounts to see that last two 
are in violation of at last one of the after mentioned symmetries of Sµ. 
Consideration of ρρρl∗ is sufficient: 

•	 To have SU(2) invariance we need even number of left handed: ρLρLρLl∗L, 

L, ρLρu ρd
L, ρLρd ρd

L, ρu ρu ρu
R, ρu ρu ρd

R, ρu ρd ρd
R, ρd ρd ρd l∗R	 RρLρu ρu l∗ R Rl∗ R Rl∗ R R Rl∗ R R Rl∗ R R Rl∗ R R R R. 

•	 Note that ρ is either ρ or ρc . l∗ can only be a l. 

•	 None of the above can be Lorentz invariant hence it is impossible to 
violate B − L with a dimension 6 operator. 

Actually a generalization of above reasoning glons that B − L can not be 
involved in Sµ neither perturbatively nor non-perturbatively. However B−
L violation would after a nice explanation for observed baryon asymmetry 
in the universe. One nice feature of GUT’s is that there are consistent 
GUT’s with relevant B − L violating terms (e.g. SO(10)). 

(c) To violate L we need at least are lepton. If we insist to have only one lepton 
than we need to contract it with at least one quark. This would violate 
SU(3) hence we need three quarks, but this term (lρρρ) is dimension 6, no 
way. Consider two leptons, in order to violate L these should have same 
lepton number, hence Majorana type contraction: lc lL or lc lR. But these L R

1 
2 
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have total hypercharge −1 and −2 each. To cancel this we are only left 
with φ’s to add. Therefore, we get lc lLφ2 with dimension 5 or lc lRφ4 with L	 R

dimension 7. As φ gets a VEV by Higgs 

2lc lLφ2 lc lLv	 (12.68) L → L

becomes a Majorana mess term. 

3. (a) SU(2) in adjoint can be represented by 

⎛ ⎞

1 
τ 3 =


⎜
⎝ 0
 ⎟

⎠ (12.69) 
−1 

⎛ ⎞ −i
1 

τ 2 = √
2


⎜
⎝ i −i ⎟

⎠ (12.70) 
i 

1
⎛ ⎞ 

1 
τ 1 = √

2 

⎜
⎝ 1 1
 ⎟⎠ (12.71) 

1 

•	 To have a cross product representation under SU(2) × U(1)Y all el­
ements in the triplet should carry same hypercharge Y . Then the 
covariant derivative takes the form 

Δµ = Iµ + igAa τa + ig�BµY	 (12.72) µ 

⎛

Y 
Y 

⎞ 

⎟
⎠where, Y =
 ⎜⎝ 

Y 

• We want to give a VEV to triplet Higgs 

⎞⎛ 

φ3 =
 ⎜⎝ 

∅1 

∅2
⎟
⎠ (12.73)


∅3 

such that only one of the linear combinations of generators τ �, τ 2 , τ 3 , 
Y is unbroken. This will be the electric charge Q. This will be a 
diagonal U(1), hence 

Q = aτ 3 + bY (12.74) 

overall constant can be observed into charge 
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Q = τ 3 + bY (12.75) 

b is arbitrary but for convenience we take as 1 

⎛

Y + 1 0 0

⎞ 

Q
 =
 τ 3 + Y
 =
 ⎜⎝ 0 Y 0
 ⎟
⎠ (12.76) 

0 0 Y − 1 

This should have a zero eigenvalue, hence Y ∈ {+1, −1, 0}. However 
0 

in case Y = 0 only τ � and τ 2 are broken by Y , hence we get SU(2)×
0 

U(1) → U(1) × U(1). We should choose Y ∈ {+1, −1}. 
(b) Consider both a doublet φ2 with the covariant derivative 

σa 1 
Dµφ

2 = (Iµ + ig A∗ + ig� Bµ)φ2 (12.77) 
2 µ 2


and a triplet with


Dµφ
3 = (Iµ + igA∗τa + ig�Y Bµ)φ3 (12.78) µ 

Expanding out |Dµφ2 |2 + |Dµφ
3|2 for |φ2|2 = v2

2 , φ3 2 = v2 
3 we get for | |

Y = ±1: 

2 2 m w± =
1 
g 2(v 2 + 2v3) (12.79) 

4 2 

2 2 m = 
1
(g 2 + ρ 

�2)(v 2 + 4v3) (12.80) z 4 2 

mγ = 0 (12.81) 

If we keep φ2 we have the option Y = 0 in contrast to above since φ2 

already breaks to U(1). For this case, Y = 0: 

1 22 m = (v 2 + 4v3) (12.82) 
4 2w± 

1 �22 m = 
4
(g 2 + ρ )v2

2 (12.83) z 

mγ = 0 (12.84) 

Note that m2 is entirely coming from usual doublet Higgs. z 
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• v3 can be constrained as follows: See H. E. Haber, “Minimal and Non­
v2 

minimal Higgs Bosons,” in “Phenomenology of Sµ and Beyond,” D.P. 
Rey and P. Rey world scientific, 1989 (this is in library: QC793.W66 
1989). An experimental fact that 

2µwρ ≡
µ


(12.85)

2 2 θcos
 wz 

is very close to 1: 

ρ = 1 − �2 , 0 < � � 1 (12.86) 

On the other hand for a general Higgs content one can express ρ in 
term so f the casming of SU(2) and U(1) as: 

T,Y (T (T + 1) − Y 2)

T,Y 2Y 2

2< φT,Y >| |
ρ = (12.87) 

2< φT,Y > ||
where T, Y denote the representation, < φT,Y > is the VEV of partic­
ular Higgs in the sum. Note that for T =
 1 

2
, Y
 1 

2
one naturally ±=


1 
2
). For gets ρ = 1 (for any number of Higgs fields with T
 = 1, Y = ±

our problem we get 

1 + 2(v3 )2 
v2= = 

1 2
2 

2
3+ vv

1 − �22
1ρ
 = (12.88) 

2
2 

2
3 1 + 4(v3 )2 

v2 
+ 2v
v

2

Therefore, v3 should be very small. 
v2 

v3
ρ � 1 − 2( 

v3 
)2 = 1 − � = 

� 
(12.89) 

v2 

⇒ 
v2 

√
2 
� 1 

This shows that adding a new type of Higgs field to the usual doublet 
is highly constrained by experiments. However, one can clearly add 
any number of doublets without violating ρ = 1 − � constraint. This 
possibly is explored in the next problem. 

(c) Initially we have 6 + 4 = 10 real D.O.F. 3 is eaten and we have left with 
1 
2
.7 real scalar D.O.F. One of them is usual Higgs with Q = 0, isospin −


±1 are two neutral scalars, two scalars of charge ±1, two 
scalars of charge ±2 as clear from above Q matrix. 

(d) We now have the possibility of a Higgs field with Y = ±1. Recall from 
Problem 2 that the biggest constraint for a L–violating term was imposed 

The rest for Y
 = 

cby preserving hypercharge. Now we can write down lLlLφ3 , which is +1

dimension 4 hence marginal. Note however, that lepton number violating
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processes are quick constrained by experiments hence v3 should again be 
v2 

very small in accord with our discussion in previous part. 

4. (a) We have two Higgs doublets φ1 and φ2 with condensation 

0 
< φ1 >=	 (12.90) 

v1 

0 
< φ2 >=	 (12.91) 

v2 

•	 Then the masses of the gauge fields are 

1	 2 2 g (v1
2 + v2)	 (12.92) 2 

wm
 = ± 4
1 �2 2 2(ρ2 + ρ )(v1 + v3) (12.93) 2 

z =m 
4

0
 (12.94) mγ = 

Therefore, 

2 
w m

m

2g
(12.95) = 

�22 + g2 
z g

is same as in the case of single doublet. 

•	 Furthermore, using the general formula for ρ (from previous problem) 
we saw that 

2 
w m

ρ = 1 = (12.96) 
m2 

z cos
2 θw 

Therefore, θw is also the same as before. 

•	 Started with 8 real scalar D.O.F. 3 absorbed into congitiduval modes 
of gauge mesons w± and z. Therefore, 5 left out of which one is the 

0	 α + iβ 
usual neutral Higgs: φ1 = 

v1 + h 
, 4 others are φ2 = 

γ + iδ 
, 

α and β are charge +1(α + iβ), −1(α − iβ), γ and δ are both charge 
zero. 

(b) See H. E. Haber in QC793.W66 1989 

(c) General Yukawa coupling to quarks reads 

α
Lφ
 d

R 
α q1 + λ2�αβ qα

Lφ∗β 
1 q 

u
d + λ3qα

Lφ
 d
R 

α q2 + λ4�αβ qα
Lφ∗β 

1 qλ1q
u
R+ (12.97)
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dHowever, under new U(1), φ1 has charge −1, φ2 has +1, qR, qu has +1 R 

then 2nd and 3rd terms not allowed. 

u	 d •	 This means φ1 cannot couple to qd , φ2 cannot couple to qR as in part 
above. 

•	 Extra restriction on the potential in the previous part is that (φ+
1 )1 φ2)(φ2φ
+ 

term is not allowed. 

•	 From continuous U(1) breaking we get an additional Goldstone boson, 
the axion. It is proportional to Tv2, where T is the U(1) generator 

φ1e
−iλ φ2e

iλ that generates φ1 , φ2 . Therefore, its coupling to → →
quarks are 

α	 u�αβ qLqRφ∗β → (uLuRλu + cLcRλc + tLtRλt) ax (12.98) 2 

axion 


