Chapter 12

Problem Set Solutions

12.1 Problem Set 1 Solutions

1.

. . 1 Y 1 -y
VxA=———=Vx| 2z [+V——=x]| 2 |=0 (12.2)
2 + y2 0 x? + y2 0

except at x = y = 0 where V x A is singular.

(b) For any closed path which does not wind around = = y = 0 line one gets

fcdﬁ-lzo (12.3)

because of above.

If C' winds around the z — a x 3 one instead gets,

f dS- A =2n (12.4)
c
We conclude that

V x A =2716(x)6(y)2 (12.5)
A way to realize the setup is a thin long selonoid at z — a x 3.
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(F+qA)? _ P +2¢Ap+ ¢* A?

H = 12.6
using V x A=0.
We change to cylindrical cards and consider the wave-function
2 2 2 2 42
, p D3 L AgL, q°A
V(p,z>0)=1(p,2)e™ = H="L 1 =% + + 12.7
( ) =¥(p, 2) TR R o (12.7)
For A = % one gets
Ho = (2472 + = (h+q) 12.8
Y= —(p,+p;:+ 5+ ) (12.8)
24 p
We see the contrufugel pet.
V= h+q)? 12.9
(10 (129)

unless ¢ = im (in which case 1) — ¥e"™?) we change the spectrum. For ¢
to be single valued, () = ? = flux quantization.

As h — 0 the dependence on A of the spectrum gets away so this may
quantum. As h — 0, V = 2;/)2 q*. A classical effect is that as you change

the strength of A, i.e., ¢ spectrum changes continuously.

If you Legendre transform you see that
1
d D Sup*0* = DpgAy (12.10)

in cylindrical cards (there are other terms that L don’t better). A con-
served charge associated with the solutions around the z — a x (3 is

od )
d, = 20 =™ 0 — pgAp (12.11)

This is canonical momentum. The mechanical momentum L, + pgAy is
not necessarily conserved.

Ao = Apvp + vy (12.12)
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Define
Frvpe = I[MAVPJ} (12‘13)
Then
11
KE =—— FHvPe (12.14)
4!uypo‘
E.O.M.:
I, FHr? =0 (12.15)

(Bronchi is trivial since there is no 5-index anti-symmetric tensor).

Easiest way to see the number of d.o.f. is to take Poincare dual:

F(x) = " Flupo () (12.16)

so there is one field degree of freedom off-shell.
On-shell one uses E.O.M.:

I,F(x) =0= F(x) = F = constant (12.17)
This is suggested to be associated with the cosmological constant: hep —
th 0111032, hep — th 0005276

A, couples to volume-form dz#Adx” Adx?. The classical source coupling
is [ Ay pdat Adz” Adxf. Under a g.t. this changes as

/ Appda Ada” Ada? — / Appda? Ada” Ada? + / 1, A, ,dz"Adz” Adz?
It 1 "

(12.18)
We should require that

/ Aypdz?Ada? = 0 (12.19)
IF'

where I, denotes the boundary of the shape it couples to. So either you
require A,,(/,) = 0 to be the only sensible g.t.’s or you require I, = 0 (u
is compact) (which solves the problem for arbitrary A,,).
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E.O.M. gets modified as

I Free — Juee (12.20)

Let’s find the source

JHP(z) = / Aap (y)dy° AdyP Ady (12.21)

5A/WP
To vary with respect to A**?(x) which lives on Minkewski, we should work
out the embedding of p into Minkewski. Parameterize the space-time
coordinate on the world-volume as y*(uq, uz,u3). Then above integral is

dy”
d*z A, (z)det §(F 12.22
[ dada @)det(55)0(F () (1222)
where F'(y) defines the surface
4 Iy”
Jopy (T /5 x — y(uy, ug, uz))( T -)d’u (12.23)
Important features are:
e B, encodes all information in A4,,,.
e [t has the gauge symmetry.
[ ]
B" — B" = [,AM (12.24)
[ ]
Fovpoe = €upeV - B (12.25)

Complete solution can be found in Peskin and Schroeder.

To find a basis for SU(N) matrices parameterize the N x N traceless and
Hermitian matrix. In case of SU(3) this is

a b+ic d+ie 1 1
b—ic f g+ih = a 0 +bf 1 +
d—ie p—ith —a—f -1 0
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) 0
e 0 +f 1 +
—1 —1
0 0
g 1 |+h i (12.26)
1 —1
We read of the basis elements T, as coefficient of a,b,-- -, h, requiring

truwtw® = %5‘”’ means choosing w® = %Ta. This is a nice basis.

o] +18]* =1 =af + a3 + 57 + 53 (12.27)

Therefore, topology of SU(2) is S3.
Topology of SU(3) is an S3 bundle over S5 (see hep — th 9812006 ).

For any representation of a Lie algebra [T% T°] = if®“T one can get a
conjugate representation by 7% = —T* because taking complex conjugate
of the commutation relations give [T, —T%] = i f®¢(—T°) for fo real.
Since T are Hermitian complex conjugate of a covariant vector transforms
as contervariant vector.

A general tenser with n upper, m lower indices can be used to denote a
general (might be reducible) representation: pj 7" transfers as

n m
p— (Tapllt i = (T ol = > (T ol i (12.28)
=1 =1
From this transformation law, it is clear that one can impose symme-
try among (j1 - - - jn) and (i1 - - - i,,) and also one can impose tracelessness:
S pltin —
Jilmtm
In fact every tenser with n symmetric upper and m symmetric lower index
with the additional restriction of tracelessness corresponds to an irreducible
representations.

67 transforms

[T%6]% = [T°]%6;, — [T°),.05 =0 (12.29)
so it is invariant. €;,;, transforms as

([T €liriy = [T, xi + [TV, €001 (12.30)

since € is anti-symmetric only independent component is €1,
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[Ta6]12 = [TQHEH + [Ta]gﬁlg = 612t’l"[Ta] =0 (1231)

SO € 1S invariant.

You can raise indices with € so sufficient to consider only upper index
tenser in SU(2). For a tenser 742» applying €; ;. on the antisymmetric
components give invariant subspaces. Hence totally symmetric require-
ments are irreducible. Dimension of p*" (with 4y -- -4, symmetrized)
can be found as follows: iy runs over 1,2. So linearly independent compo-
nents of p are given by partitioning the set iy -- -4, as 111---1/222..-2.
The number of ways of doing this is the number of ways you can put one
partition among n boxes, i.e., " —1% 1 = n + 1 Note that this is the

= representation.

2
From the transformation law L gave above we see that

dimension of spin—

[Tl = SO gtk (12:32)

=1

since T3 = % ( 1 1 ) and

pil‘“i)":pi1®1®...®1+1®pi2®...®1+...+1®...®1®pin (12.33)

where each covariant vector is a spinf% representation, T3 reads the total
S. (2 components of the spin) in the representation p’ . This is in the
n n

range (%, —%) S0 P is indeed a spin—3 representation and each state in

this representation is labeled by the eigenvalue of T3. Bells are ringing.

Tenser products of representation of the group is R; ® Ry. Since group
elements are obtained by erspenentrating the algebra G' = e, tenser prod-
ucts of the representation of the algebra are of the form r; ® 15 4+ 11 ® 7.
This obviously satisfy the same commutation relations.

Let me only show the evaluation of Cs(p) in the most non-trivial example,
C5(27) in SU(3). Consider the Clebsh-Gordon decomposition of a product
representation:

P1® Py = pi (12.34)

The way T acts on p; ® py is given above
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Ta

p1®p2 Tf?l ® 1P2 + 1P1 ® Tpal

So

tr(T;?l@pQT;l@pz) <C2(p1) + Cg(pQ))dpldPQ
On the other hand,

Toem = Zi:Tp
tr (1 gp T h0p) = tr(zi: 15, %:Tp])
= Z tr(T,T,)
= Z O2<Pi)dpi
Then,
(Ca(p1) + Ca(p2))dprdps = 202 pi)dp,
27 occurs in the product of two 8’s:

8x8=27+10+10+8+8+1

You should have found that Cy(8) = 3, C5(10) = 6. Plug these in:

(3+43)-8-8 = C(27)-27+2-6-10+2-3-8+0

8:8-6 = 27C,(27)+ 168

216
G27) = o

= 8

7

(12.35)

(12.36)

(12.37)

(12.38)

(12.39)

(12.40)

(12.41)

(12.42)



