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Lecture 8 

In the last lecture, we showed, for a general interacting theory: 

−iZ 
ˆ ∞ 

2) 
i 

GF (p) = + dµ2 σ(µ , (1) 
p2 + m2 − iϵ 4m2 p2 + µ2 − iϵ

where the first term is the contribution from single-particle states, and the second term is the contribution from 
multi-particle states. From this, we have that ∑ 

Im(iGF (p)) = πδ(p 2 + m 2 
i )Zi + πσ(−p 2). (2) 

i 

This is the spectral function, picking out the physical on-shell states. There is one more sum rule we wish to observe. 
Begin with the canonical quantization: [

ϕ̇(t, ⃗x), ϕ(t, ⃗y)
]
= −iδ(x⃗ − y⃗). (3) 

As this operator is just a complex number, we can equate it with its expectation value: 

⟨0|
[
ϕ̇(t, ⃗x), ϕ(t, ⃗y)

]
|0⟩ = − iδ(x⃗ − y⃗) 

|∣∣∣ ∣∣∣ 
[

= ∂t ⟨0| ϕ(t, ⃗x)ϕ(t′, ⃗y) |0⟩|t′ →t − ∂t ⟨0| ϕ(t′, ⃗y)ϕ(t, ⃗x) |0⟩|t′ →t 

= ∂tG+(x − y) t′ →t − ∂tG+(y − x) t′ →

t′ →

| t 

2) 
t′ →t

]ˆ ∞ 
(0) (0)

dµ2 ρ(µ 2) 2)∂tG (x − y; µ 
t 
− ∂tG (y − x; µ= + + 

0 
∞ˆ 

(0) 2)dµ2 ρ(µ 2) ∂tG+ (x − y; µ=2 . 
tt′ →0 

Recall, in the free theory, we have that 

i(0)
∂t G+ (x − y) = − 

2 
δ(x⃗ − y⃗), (4) 

tt′ →

and so, we have that 

1 = 
ˆ ∞ 

dµ2 ρ(µ 2). (5) 
0 ∑ 

Because ρ(µ2) = σ(µ2) + 2 2 
i ), where both terms are greater than or equal to zero for all values of µ2 

i Ziδ(µ − m , 
we have that ˆ ∞ 

dµ2 σ(µ 2) < 1, Zi < 1. (6) 
4m2 

In reality, the above argument may not always hold due to possible ultraviolet divergences. The same discussion 
can be generalized to a spinor, as seen in the problem set, and to a vector, as we will discuss later. 

2.2: AN EXPLICIT EXAMPLE 

Consider a scalar Lagrangian with a ϕ3 interaction: 

L = − 
2

1 
∂µϕ∂

µϕ − 
2

1 
m0

2ϕ2 + 
6

1 
gϕ3 . (7) 
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This leads to the Feynman rules: 

p 

−i 
= , 

p2 + m2 − iϵ 

= ig, (8) 

and by dimensional analysis, we find 

[ϕ] = 
d − 2 

,
2 

[x] = − 1, 

d 
[g] =3 − ,

2 

where we work in a general space-time dimension d. We note that g is dimensionless in d = 6. 

GF (p) = + + 

+ + + (9) · · · 

Note that we do not consider diagrams involving tadpoles: 

= + + (10)⟨0| ϕ |0⟩ ≡ ϕ0 · · · 

as we can always shift the field definition to ϕ = ϕ, so that ⟨0| ϕ̃ |0⟩ = 0, and the sum of the tadpole sub­ϕ0 + ˜

diagrams gives zero. Now, we define 1PI, or one-particle irreducible diagrams, as the diagrams which cannot be 
separated into two disconnected parts by cutting one propagator. We denote the sum of 1PI diagrams by 

i�(p) = 
p 

= + + 

and so, we have that 

+ + (11)· · · , 

GF (p) = + + + (12)· · · . 
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That is, 

(0) (0) (0) (0) (0) (0)
GF (p) =GF + GF i�GF + GF i�GF i�GF + · · · 

(0) 1 
=GF (0)

1 − i�GF 

1 
=(

G
(0) 
F

)−1 
− i� 

= 
p2 + m0

2 − �(p) − iϵ 
−i 

where �(p) is the self-energy. We note that � is, in fact, a function of p2 only, by Lorentz symmetry. Before 
evaluating �(p2) explicitly to lowest order, we make two remarks: 

1.	 The physical mass, the pole of GF (p), is given by p2 + m0
2 − �(p2) = 0. That is, the physical mass m2 

satisfies 
m 2 − m0

2 + �(−m 2) = 0 (13) 

2.	 The field renormalization Z, the residue of the pole, is given by expanding around the pole to lowest 
order: 

1 
2 2iGF (p)|p ≈−m = 

p2 + m2 − �′(−m2)(p2 + m2) − iϵ 

= 
1∣∣∣p2 + m2 − iϵ d�1 − dp2 

1 
, 

p2=−m2 

and so Z−1 = 1 − d� . 
p2=−m2dp2 

We now proceed to evaluate �(p2) to the lowest order in g: 
q + p 

i�(p 2) = .	 (14) 
p 

q 

Using our Feynman rules, we have 

1 
ˆ 

ddq (0) (0)
i�(p 2) = (ig)2 GF (q)GF (q + p)

2 (2π)d 

g2 ˆ ddq	 1 
=	 . 

2 (2π)d (q2 + m0
2 − iϵ)((q + p)2 + m0

2 − iϵ) 

We now evaluate the integral explicitly, using a series of tricks. Firstly, we note the identity, due to Feynman: 

1 
an 

= 
ˆ
0

1 

dx1 · · · dxn δ(x1 + · · · + xn − 1)(n − 1)!(x1a1 + · · · + xnan)
−n . (15) 

a1 · · · 

Thus, our integrand can be rewritten as 

1 
ˆ 1	 1 

= dx 
(q2 + m0

2 − iϵ)((q + p)2 + m0
2 − iϵ) 0 [x((q + p)2 + m2) + (1 − x)(q2 + m2)]

2 
0	 0ˆ 1 1 

= dx 
0 [(q + xp)2 + D]

2 

with D = m0
2 +x(1−x)p2 . Next, we perform a Wick rotation. In Lorentzian signature, the integral is not convenient 

to evaluate, because of the poles near the integration paths. Thus, we rotate the q0 contour to the imaginary axis 
along the direction shown in figure 1. So, we let q0 = iqd, and therefore q2 = q1

2 +. . .+q2 = q2 , and 
´ 
ddq = i ́

 
ddqE .d E 
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Figure 1: Illustration of the Wick rotation of the variable q0. 

Combining our two results, we have the self-energy in the form 

ig2 ˆ 1 ˆ 
ddqE 1 

i�(p 2) = dx . (16)
2 (2π)d (q2 + D)2 

0 E 

We now proceed to the final evaluation. We observe that (16) is convergent only for d < 4. We may evaluate it for 

d 

d < 4, then analytically continue its value for d ≥ 4, treating d as a complex variable. We make use of the general 
formula 

dd �(b − a − d )�(a + d )2 2

ˆ 
qE (qE )

a 

(2π)d 
2
d 

D−(b−a− ) (17)= . 
(qE + D)b �(b)�(d 

2(4π) )2

In this case, we have b = 2, a = 0. And so, 

2 d ˆ 1 

0 
dxd 

�(2 − )2 12) = 
g

�(p . (18)d2 
0 + x(1 − x)p2)2−2 (4π) (m2 2 

Example 1: d=3 

g2 ˆ 1 1 
�(p 2) = dx 

16π 0 0 + x(1 − x)p2) 
. (19)1 

22(m

First, we consider the physical mass to O(g2). We wish to find the solution to (13). Note that the self-energy is of 
order g2 , and so the solution is given to O(g2) by 

m 2 =m0
2 − �(−m 20) 

=m0
2 − 

16

g2 

π m

1 

0 

ˆ
0

1 

dx 
(1 − x(1

1 

− x)) 
2 

=m 20 − 
16

g

πm0 
log 3. 

1 
2 

The second term is the mass renormalization due to the interaction, to lowest order. Now, we consider the field 

renormalization, Z−1 = 1 − d� , and note that again, as �(p2) is of order g2 , to lowest order we have dp2 
p2=−m2 

d� 
Z−1 =1 − 

dp2 
p2=−m2

0 

3 
2 

=1 − 
16

g2 

π 
(− 

2

1
) 
m

1 
3
0 

ˆ
0

1 

dx 
(1 − 

x

x

(1

(1 

−
− 

x

x

) 

)) 

20 23g.1 + 3
0 

1 
= < 1, 

32�m
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where the integral in dx has been evaluated explicitly. Finally, we note that for −p2 ≥ 4m0
2 , we have that m2

0 + 
x(1−x)p2 is smaller than zero for a range of x between 0 and 1. Therefore, �(p2) becomes complex. It is convenient 
to consider 

g2 ˆ 1 1 
�(s) = dx (20)

16π 0 (m0
2 − x(1 − x)s) 

1 
2 

as a function of a complex variable s, with �(p2) = �(s = −p2 + iϵ). �(s) has a branch point at s = 4m0
2 . This is 

precisely the multiple-particle cut predicted in the general formalism last lecture. Note that m2 = m0
2 + O(g2). We 

can now understand the physical interpretation of this result: 

i�(p 2) = (21) 

to lowest order, and when −p2 > 4m0
2 , both the intermediate particles can simultaneously go on-shell. Im(iGF ) = 

πσ(−p2) becomes non-zero and Im(−p2) is just the Feynman diagram evaluated with both the intermediate particles 
on shell, giving a factor of δ(p2 + m2) for each propagator. 
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