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Lecture 4 

1.3.3: Field equations and conservation laws 

We begin with the Lagrangian we considered in the last lecture: 

L = − 
c 
Tr(Fµ� F µ� ) − i ̄Ψ(�µDµ − m)Ψ

4 
c 

µ� F µ�bT aT b) − i ̄= − Tr(F a Ψ(�µ(�µ − igAµ
a T a) − m)Ψ.	 (1) 

4 

For the gauge group SU(n), we can choose T a such that Tr(T aT b) = �ab, and so c = 1. We now obtain the equations 
of motion. 

A. Varying	Aµ : 

�F a = �µ�A
a
� − �� �A

a + gfa A�
c + Ab �Ac

� ) = (Dµ�A� )
a �Aµ)

a (2) µ� µ bc(�Aµ
b 

µ − (Dv

where (Dµ�A� )
a ≡ �µ�A�

a + gfa
bcAµ

b �Ac
� . Now, 

µ� F µ�a �L = − 
2

1 
�F a − gΨ̄�µT aΨ�Aµ

a ,	 (3) 

and so 
(DµF µ� )a = J�a , (4) 

where (DµF µ� )a ≡ �µF µ�a + gfa
bcAµ

b F µ�c, and J�a ≡ gΨ̄�� T aΨ. Equation (4) can also be written as: 

�µF µ�a = j�a (5) 

with j�a ≡ gΨ̄�� T aΨ − gfa
bcAµ

b F µ�c. 

B. Varying Ψ : 
(�µDµ − m)Ψ = 0. (6) 

We note for emphasis that this is a matrix equation. Now, we recall that in quantum electrodynamics, �µF µ� = j� , 
with j� ≡ eΨ̄�� Ψ and �� j

� = 0, that is, j� is a conserved current. When j = 0, Aµ is a free field, and we obtain 
free electromagnetic wave solutions. 

Remarks: 

1.	 In the non-Abelian case, the theory for Aµ remains interacting with Ψ = 0. In quantum electrodynamics, 
Aµ is neutral, whereas, in the non-Abelian case, Aµ

a carries the group index, and so is charged under 
itself, leading to self-interaction. 

2.	 In terms of Fµ� = F a and J� = J�aT a, we have from (4) that µ� T a 

DµF µ� = J� , (7) 

with DµF µ� = �µF µ� − ig [Aµ, F µ� ], and under a gauge transformation, 

Fµ� −→ V Fµ� V †, 

DµF µ� −→ V DµF µ� V †. (8) 

more generally, for any X = XaT a , which transforms as X −→ V XV †, DµX = �µX − ig [Aµ, X] 
transforms as DµX −→ V (DµX)V †. From (7), we have that 

J� −→ V J� V †. (9) 

This will be checked directly in the problem sets. 
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3.	 Acting with D� on (7), 

D� DµF µ� =
1 
[D� , Dµ] F µ� 

2 

=
1 
[F�µ, F µ� ] = 0,

2 

and so D� J
� = 0. This can also be checked directly from the equations of motion. 

4.	 J� is precisely the conserved Noether current for global SU(n) symmetry in the absence of Aµ. For 
Aµ = 0, ̸ J� is covariantly conserved. Of course, (1) is also invariant under global transformations 

Ψ(x) −→ V Ψ(x), Aµ(x) −→ V Aµ(x)V †,	 (10) 

with V a position-independent SU(n) matrix. The Noether current for this global symmetry is precisely 
j� , which was introduced in (5). From (5), 

�µj
µ = 0.	 (11) 

Note that j� depends on Aµ non-trivially, which is true if and only if Aµ
a is charged. j� is not gauge 

invariant: it does not have good transformation properties. 

1.3.4 Further generalizations 

A representation of a Lie group G on a vector space V is a linear action 

g v ∈ V	 (12)· 

for g ∈ G, v ∈ V , such that 
g1 · (g2 · v) = (g1 ◦ g2) v (13)· 

where is the group product. Here, V is the representation space.◦ 

A representation of a Lie algebra g on a vector space V is a linear action 

x v ∈ V	 (14)· 

for g ∈ G, v ∈ V , such that 
[x, y] v = x (y v) − y (x v) (15)· · · · · 

where [ , ] is defined using the group product. The concept of a representation is, again, tailor-made for physics. 
Here, V is the physical space, and the same abstract group can appear in different physical contexts, with different 
V (with different representations). We note that a representation for G induces a representation for g, and visa versa. 

Example 1: Angular momentum, SU(2) 

A spin-j representation is described by (2j + 1) × (2j + 1) matrices, acting on a (2j + 1)-dimensional V . For 
SU(n), representing the group as n × n unitary matrices acting on n-dimensional complex vectors gives the fun­
damental representation. Here, 

Aµ = Aµ
a T a ∈ g,	 (16) 

with T a in the fundamental representation. More generally, a representation r of g (or G) of dimension dr is defined 

by dr × dr matrices Ta 
(r) 

that represent the generators, satisfying [ ]
T (r), T (r)	

= if c . (17)a b abTc 
(r) 

One can prove that, for compact groups, 
Tr(Ta 

(r)Tb 
(r)

) = C(r)�ab, (18) 

where C(r) is a positive number depending on the representation r. For non-compact groups, Tr(Ta 
(r)

Tb 
(r)

) is not 
positive-definite. Amongst all representations, there is a special one for all G (and g). The adjoint representation, 
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which is universal for all Lie groups and Lie algebras, has as its representation space the vector space for the Lie 
algebra itself. That is, V = g (dim V = dim g). The action of the Lie algebra is defined, for x ∈ V = g, y ∈ g, by 

y x ≡ [y, x] . (19)· 

We need to show that this rule satisfies (15), that is, 

y1 · (y2 · x) − y2 · (y1 · x) = [y1, y2] x. (20)· 

The left-hand side of this equation is [y1, [y2, x]] − [y2, [y1, x]], and the right-hand side is [[y1, y2] , x]. The equality of 
these follows from the Jacobi identity, which is an automatic consequence of the associativity of the group product, 
so (19) indeed gives a representation. For SU(n), the Ta 

(adj) 
are (n2 − 1) × (n2 − 1) matrices. Now we go back to the 

theory, and generalize as follows: we consider a general compact group G in place of SU(n), with Ψ in the vector 

space of some representation r of G. Aµ = Aa Ta 
(r) ∈ g. Now we take µ

L = − 
c 
Tr(Fµ� F µ� ) − i ̄ (21)Ψ(�µDµ − m)Ψ,

4 

µ� T (r) 
µ

(r) (r) 
b 
(r)

with Fµ� ≡ F a a , Dµ ≡ �µ − igAa Ta . Since Tr(Ta T ) = C(r)�ab, to maintain canonical normalization, 
c = C

1
(r) . Here, compactness of G is essential, as non-compactness leads to the wrong sign for kinetic terms of Aa

µ. 
Now, the action of the Lie group G on V = g is given, for g ∈ G, x ∈ g, by 

g · x ≡ g ◦ x ◦ g−1 . (22) 

It is easy to check that this satisfies the group action product rule (13). For infinitesimal g = 1 + iy, y ∈ g, this 
action reduces to (19). In matrix form, for x ∈ V = g, x = xbTb (the upper and lower indices can be distinct for 
this general treatment) 

Ta 
(adj) x = [Ta, x] = [Ta, Tb] x b = if c

abTcx b . (23)· 

On the other hand, 
T (adj) x = (T (adj) x)cTc (24)a a· · 

where (Ta 
(adj)

x)c ≡ (Ta 
(adj)

)cbx
b . Hence, 

(Ta 
(adj))cb = if c

ab. (25) 

Remarks: 

1. Consider Ma in the adjoint representation, a = 1, . . . , dim g; 

(DµM)a = �µM
a − igAa (T (adj) 

M)a 
µ b · 

= �µM
a + gfa

bcA
b
µM

c , 

where the second line follows from (25). In matrix form, with M = MaTa 
(r) 

for any representation r, 

DµM = �µM − igAµ
a Ta 

(adj) M· 

= �µM − igAa T (r) 
µ

= �µM − ig [Aµ,M ] 

with Aµ = Aa
µTa. 

2. Under a gauge transformation, 

M −→V MV −1 , 

MaTa −→MaV TaV −1 , 

and hence, 
Ma −→ MaD b , (26)a 

where V TaV −1 ≡ Da
bTb. 
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