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5.3.3: Beta-Functions of Quantum Electrodynamics

In the case of quantum electrodynamics, we have the Lagrangian
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In quantum electrodynamics, a(p) increases as p is increased, and a(u) decreases as p decreases. In particular,
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Figure 1: We find a linear relationship between o~ !(u) and log(u) with a negative gradient for quantum electrody-
namics.
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the Landau pole at a(u) — oo is given by
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independently of the choice of pg. Quantum electrodynamics becomes strongly coupled near the scale A. It is
convenient to express a(y) in terms of the physical appys ~ %7 which we measure. Consider
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At the one-loop level,
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where 12 = 43‘2, D = m? + z(1 — 2)k?* and m? = m? 4+ O(«), where m, is the physical electron mass. It is

convenient to introduce
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Note that this quantity is finite, although the numerator and denominator of the last term are divergent. &(k) is
an effective k-dependent coupling. In particular,
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and the Landau pole occurs at A = mee;’Twe ~ m.e5*137. We now consider &(k) = % :
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and so &(k) =~ «a(p) for p =~ k. Note that this is scheme-independent: in any scheme for p > me,
a(p) = &)

2. When k? < m2, we have a(k) ~ ae, but a(p) — 0 as £~ — 0. For p < me, o) differs qualitatively
from the physical coupling. Physically, m, becomes important, but that is not tracked by the MS or

(k)

137

-log(my) -log(k)

Figure 2: (k) as a function of log ;. At the scale of k ~ m., we have &(m.) ~ 1=
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MS schemes: «(yu) is no different for a theory with m, = 0. It is more transparent to understand the
behaviour of &(k) using the Wilsonian approach. The coupling in the Wilsonian action, by definition,
should track &(k) closely.

Below the scale of m,, the electron becomes heavy, and we can then integrate it out, leaving a pure
Maxwell theory, in which the coupling constant does not run.

3. For massless quantum electrodynamics, with m. = 0, a(u) is qualitatively correct for 4 — 0. We then
find that acfs(k) — 0 as k — 0: The theory is marginally irrelevant.
5.3.4: Beta-Function of Quantum Chromodynamics

The Lagrangian of quantum chromodynamics, with an SU(N.) gauge group and Ny quarks, where N, = 3 and
Ny =6, is given by
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Ay = Ajte, F, = Fgt%, where t* are the generators of the fundamental representation of SU(N.). The covariant
derivative is given by
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We redefine A, — £ 4,,, and so the Lagrangian becomes
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We will outline the computation of the f—function for the pure gauge theory using the language of the Wilsonian
approach, in the Euclidean case. Consider that the theory is provided with a cut off A, and bare coupling g = g(A).
We now write
A i
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where ALA,) is the part below the scale A’, and flu is the high-energy part, above the scale A’. Then we have
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We take the derivative expansion of AS,
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where ¢ is a pure g—independent number. A precise calculation gives ¢ = —(E—W)%NC. So, for the f—function, we
find 5
B (11 2
=——"—|—Ng—=-Np|. 27

Considering the fermionic sector, we have
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If we define a; = %, we find
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The Landau pole occurs at
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Figure 3: a~! scales linearly with log(u) with a positive gradient in quantum chromodynamics, as with the g¢3
theory.
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independently of our choice of pg. Finally, we put our coupling constant in the form

(1) = o (33)
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Near Agcp, quantum chromodynamics becomes strongly coupled. The form of this coupling leads to many inter-
esting phenomena, including confinement, and chiral symmetry breaking: <U LU R> #0.
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