
�

Lecture 25 8.324 Relativistic Quantum Field Theory II Fall 2010 

8.324 Relativistic Quantum Field Theory II 
MIT OpenCourseWare Lecture Notes


Hong Liu, Fall 2010


Lecture 25 

5.3.2: Computation of Beta-Functions 

We consider the beta functions for the mass m and the coupling g: 

dg dλm
βg = µ , βm = µ , (1) 

dµ dµ 

where λm = mµ
(
2 
µ) . Note that the coupling constants in different renormalization schemes are generally different. 

In general, we have 

{λi} : scheme 1, 

{λ̃i} : scheme 2. 

In the problem set, we will see how the β−functions transform. In particular, the first two terms are universal. 

Example 1: gϕ3 in d = 6 with MS scheme 
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with 
1 
2ϕB = (1 + A) ϕ, 
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(1 + A)
−

(1 + B)2 2mB = m, 
3 
2

ϵ 
(1 + A) (1 + C) ,2gB = gµ 

α α α , up to O(α2). The key is to note that the bare quantities should be independent A = −
of µ : 

, B and C= − = −6ϵ ϵ ϵ 

dmB dgB 
µ = 0, µ = 0. (2) 

dµ dµ 

This leads to results for βg and βm. In general, in the case of dimensional regularization and minimal subtraction, [ ]∑ 
gi 
(B) 

= µ δi(ϵ) λi(µ) + ϵ−nG
(
i
n)
(λj) (3) 

n=1 

where δi(ϵ) = δi + aiϵ: the last correction is due to dimensional regularization. From (2), we have 

dλi
βi(ϵ) = µ . (4) 

dµ 

We can expand 
βi(ϵ) = βi + ϵαi (5) 

where the first term is the β−function and the second term again comes from dimensional regularization. If we take 
the µ−derivative of (3), we find [ ]∑�

(n)
0 = δi(ϵ) λi + ϵ−nGi 

i=1[ ]∑ (n)�
∂Gi+ βi(ϵ) + ϵ−n βj (ϵ) . 
∂λji=1 

1 
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Equating both sides of the above equation order by order in ϵ, we find 

[
[	 ]

] 

(0) (2)
(δi + aiϵ) λi + ϵ−1Gi + ϵ−2Gi + . . .

(0) 

+ βi + ϵαi + ϵ−1 ∂Gi (βj + ϵαj ) + ϵ−2 . . . = 0,
∂λj 

and so, at O(ϵ), 
αi = −λiai, (6) 

(note that we are not invoking the summation convention here,) and, at O(ϵ2), 

∑ ∂G
(1) 

(1)	 iδiλi + aiGi + βi + αj = 0,	 (7) 
∂λjj 

or, equivalently, ∑ (1) 
(1) ∂Giβi = −δiλi − aiG + 

∂λj 
aj λj .	 (8) i 

j 

We note that the βi are determined by simple-pole residuces of the counter-terms, and that at O(ϵ−n) for n ≥ 1, the 
constraints determine G(n) 

for n ≥ 2 in terms of G(1) 
. We now return to our discussion of the gϕ3−theory. Here, i	 i 

g1 = αB = αµϵ (1 + A)
−3 

(1 + B) ,( )
g2 = m 2 

B = µ 2λm 1 − 
5

6

α

ϵ 
+ . . . , 

2 

where α ≡ 
(4
g
π)3 , and so we find 

(1) 3 
α2δ1(ϵ) = ϵ,	 δ1 = 0, a1 = 1, G1 = − , (9) 

2 

and 
(1) 5 

δ2(ϵ) = 2,	 δ2 = 2, a2 = 0, G1 = − λmα. (10)
6 

From this, we find for the β−functions, 

βα = 
2

3 
α2 − 3α2 = − 

2

3 
α2 , 

5 5 
βm = −2λm − λmα = −2λm − λmα + . . . . 

6 6 

Let us consider the physical implications of these equations. 

1.	 At weak coupling, α ≪ 1, βm is dominated by the first term, βm ≈ −2λm. This gives the dimension in 
the absence of the interaction, which implies the familiar behaviour ( )2 

µ0
λm (µ) = λm (µ0) ,	 (11) 

µ 

and so λm(µ) grows quadratically as we decrease µ. 

2.	 α is marginal in the absence of interactions, and so, interactions are important to determine the leading 
contribution. For gϕ3, β2 < 0, and the coupling is marginally relevant: α becomes stronger going into 
the infrared, as we decrease µ, and stronger going into the ultraviolet, as we increase µ. 

We now integrate 
dα 3 

µ = −	 α2 , (12)
dµ 2 

which is equivalent to ( )
1 3 

d =	 d log µ. (13)
α 2 

2 
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Suppose that α(µ0) = α0. Then we have 
1 1 3 µ 

α(µ) 
− 

α0 
= 

2 
log 

µo 
, (14) 

and hence, 
α0

α(µ) = µ . (15)
1 + 3α2 

0 log µ0 

In particular, as µ −→ ∞, α(µ) −→ 0. This is asymptotic freedom. α(µ) −→ ∞ when 3α
2 
0 log µ

µ 
0 
= −1. That 

Figure 1: We find a linear relationship between α−1(µ) and log(µ) with a positive gradient for the ϕ3 theory. 

2

3α0
is, when µ = µ0e

− ≡ Λ. We note that this discussion only applies to α(µ) ≪ 1. Of course, our one-loop 
approximation already breaks down before Λ is reached. Nevertheless, Λ provides a characteristic scale for the 
system. Λ is independent of µ0. We can rewrite 

2 1 
α(µ) = , (16)

3 log µ 
Λ 

and instead of specifying α(µ0) = α0, we can simply specify Λ. The system does not have any dimensionless 
coupling. Rather, it has only a scale Λ. This is known as dimensional transmutation. 

Now let us go back to the issue of the large logarithms encountered in the on-shell scheme when k2 ≫ m2 . We 
encountered α log k

2 
at the one-loop level. However, it goes away if we choose µ ∼ k. We want to understand why m2 

this is, and why we can still trust perturbation theory. To see what is happening, let us consider, for µ ∼ k 

α(µ0 = m) = α0, (17) 

so that ∑ nα 
� ( µ )

α(µ) = 
1 + 3 α0 log µ ∼ α0 α0 log 

m
. (18) 

2 m n=0 

These are exactly the logarithmic terms we have seen before. They were just transferred to the relation between 
α(µ ∼ k) and α0. The higher loop correction give higher powers in α0 log µ . As a perturbation series in α0, the last m 
expression becomes bad when α0 log µ becomes large, but through the miracle of the renormalization group flow, m 
by integrating the β−function, we have essentially resummed this bad series as far as α(µ) remains small for all µ. 
This remarkable result is the essence of the renormalization group flow, which clearly also applies to the Wilsonian 
approach. 

Figure 2: α(µ) and α(µ0) are separated by large logarithms, but if we take infinitesimal steps, ∆α = 
α2(µ) log µ+∆µ ∼ α2(µ) ∆µ , and so for α2(µ) small, we can ignore the higher order terms. µ µ 
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