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5.1: RENORMALIZATION GROUP FLOW 

Consider the bare action defined at a scale Λ0 : 
ˆ �0 

S [Λ0] = dd x 
1
(∂ϕ)

2 
+ 
∑ 

gi 
(0)

Oi, (1) 
2 

i { }
where Oi is a complete set of local operators formed from ϕ. The theory is specified by the set gi 

(0) 
. As explained 

in the previous lecture, we can change the cutoff scale to some Λ < Λ0 by integrating out the degrees of freedom in 
the interval (Λ, Λ0) . This gives 

S [Λ] = 
ˆ � 

dd x 
1
(∂ϕ)

2 
+ 

∑ 
gi(Λ)Oi, (2) 

2 
i 

after redefining ϕ to absorb the field renormalization factor Z. This theory is specified by the set {gi(Λ)} . Similarly, 
at another scale Λ′ < Λ, we obtain S [Λ′], described by {gi(Λ′)} . These three actions, S�0 , S� and S�′ , should 
all describe the same physics at an energy scale E < Λ′ < Λ < Λ0. The relations between them can be found by 
integrating out the degrees of freedom explicitly in the path integral, giving 

gi(Λ) = gi(gi 
(0) 

, Λ0; Λ), 

gi(Λ
′) = gi(gi 

(0) 
, Λ0; Λ

′) 

= gi
′(gi(Λ), Λ; Λ

′). 

This process describes the renormalization group transformations, or the renormalization group flow: transforma­
tions between couplings at different scales to ensure they describe the same low energy physics. If we consider, for 

Figure 1: The renormalization flow as the flow in the space of all possible coupling parameterizations to ensure the 
same low-energy physics at different scales. 

simplicity, the dimensionless couplings {λi(Λ)} defined by λi ≡ giΛ−δi , differentiating gives 

dλi
Λ = βi({λj (Λ)}) (3) 
dΛ 

where βi ({λj (Λ)}) = d λi({λj (Λ)} , Z)∣ . It is important to note that the βi are only functions of the d ln � Z=1 
dimensionless coupling constants {λj (Λ)}: they do not depend on Λ explicitly, as can be seen by considering 
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integrating out a fraction of the highest-energy modes in the path integral. The β-functions give the tangent vector 
of the flow, and depend only on the values of {λj }. Under a relabeling of couplings, 

λ̃i = λ̃i({λj }), (4) 

we have that 

β̃i(
{
λ̃
}
) = 

∑ dλ̃i 
βj ({λ}). (5) 

dλjj 

The β−functions can be computed explicitly from the path integral: 

ddx Jϕ Z [J ] = 
ˆ

Dϕ e−S[�,ϕ�]−
´


|k|<�


ϕ,�]− ddx J(ϕ�+ϕ̃)= 
ˆ

Dϕ�′ (k) 
ˆ

Dϕ̃(k) e−S[ϕ�′ +˜
´ 

|k|<�′ �′<|k|<� 

ddx Jϕ�′ .= 
ˆ

Dϕ�′ (k) e−S[ϕ�′ ,�′]−
´ 

|k|<� 

Now, if we let Λ′ −→ Λ − δΛ, S [Λ − δΛ] = S [Λ] + δS [Λ] , we have 

dS�
Λ = F (S�) (6) 

dΛ 

Expanding ∑ ∑ 
S� = giOi = λiΛ

δi Oi, (7) 
i i 

(6) gives us the β-functions for all couplings. As an example, let us consider the case of a free scalar field in four 
dimensions, with a cut-off at a scale Λ. Then, we have 

ˆ
d4k 

S� [ϕ] = 4 f(k)ϕ
∗ (8) �(k)ϕ�(k). 

k<� (2π)

We expand f(k) as a power series in k: 

f(k) = m0
2 + k2 + r4k

4 + . . . 

r̃4(Λ) 
= λm(Λ)Λ2 + k2 +

Λ2 
k4 + . . . , 

where the coefficient of k2 can be chosen to one with a suitable normalization for ϕ�. Here, λm(Λ), r̃4(Λ), . . . [ ] [( )2]
are dimensionless couplings: ϕ2 = 2, ∂2ϕ = 6, and so δm = 2, δr4 = −2, for example. We now let 

ϕ�(k) = ϕ�′ (k) + ϕ̃(k) with ϕ̃(k) supported for k ∈ (Λ′ , Λ) and ϕ�′ supported for k ∈ (0, Λ′) . Then we have that [ ] ˆ 
d4k 

S� [ϕ�] = S� [ϕ�′ ] + S� ϕ̃ + 2 4 f(k)ϕ�′ (k)ϕ̃(k), (9) 
(2π)

where the last term is zero as ϕ�′ and ϕk have disjoint support. Integrating out ϕ̃ only generates an overall constant 
for the path integral, and so 

ˆ
d4k 

S�′ [ϕ�′ ] = S� [ϕ�′ ] = f(k)ϕ∗ 
�′ (k)ϕ�′ (k) (10) 

k<�′ (2π) 

where f(k) has not changed. That is, 

f(k) = m0
2 + k2 + r4k

4 + . . . 

= λm(Λ′)Λ′2 + k2 + 
r̃4(Λ

′) 
k4 + . . . , 

Λ′2 
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� 

and we conclude that 

Λ 

(
(

)2 

−2)
)
)

−δmΛ Λ 
Λ′λm (Λ

′) = λm (Λ) = λm (Λ) is a relevant operator, 
Λ′ 

−δm 

(
(
Λ 
Λ′r̃4 (Λ

′) = r̃4 (Λ) = r̃4 (Λ) is an irrelevant operator. 
Λ′

Similarly, 

dλm(Λ′)
βm = Λ′ = −2λm = −δmλm < 0,

dΛ′ 
�′ →� 

dr̃4(Λ
′)

βr4 = Λ′ 
dΛ′ = 2r̃4 = −δmr̃4 > 0. 

�′ →� 

We note that dimensional quantities like m2 and r4 do not change at all in this instance, but that the dimensionless 
couplings flow as they are defined with respect to the cut-off scale. This does reflect the right physics: the relative 
importance of each term in f(k) as we go to lower energies, or smaller k. That is, 

2m0 becomes larger as k becomes smaller, 
k2


r4k
4


becomes smaller as k becomes smaller. 
k2 

We will now derive the full flow equation for S� [ϕ] . For this purpose, we write it as 

S [ϕ, Λ] = 
1 
ˆ 

d4k
G−1(k)ϕ(k)ϕ(−k) + SI [ϕ, Λ] + U(Λ) (11)

2 (2π)
4 � 

where U(Λ) is a cosmological constant, and the propagator G�(k) satisfies 

G�(k) =

{
k
1 
2 k ≪ Λ, 

(12)
0 k ≫ Λ. 

We have that ˆ
Z = Dϕ(k) e−S0[ϕ,�]−S̃I [ϕ,�], (13) 

where S̃I = SI + U . There is now no need to impose an explicit cut-off when integrating over ϕ(k). It is clearly 

Figure 2: The propagator G�(k) = 1 κ�(k) has a cut-off around k ∼ Λ.k2 

very complicated to obtain the flow equation for S̃I [ϕ, Λ] by evaluating the path integral directly. We will instead 
require 

dZ [Λ]
Λ = 0, (14)

dΛ 
which is an equivalent statement. From this, we have ⟩⟨ ⟩⟨dG−11 

ˆ 
d4k 

2 
SIϕ(−k)ϕ(k)e− ̃ SIΛ∂�e

− ̃Λ . (15)= 4 dΛ(2π)
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� 

� 

� 

� 

Here, ⟨. . .⟩ = 1 
´ 
Dϕ . . . e−S0 , with Z0 = 

´ 
Dϕ e−S0 . We would like to express the left-hand side of (15) more Z0 

directly in terms of SI . For this purpose, consider 

δ SI0 = 
ˆ 

Dϕ 
(
ϕ(k)e−S0− ̃

) 
. (16)

δϕ(k) 

From this, we have that ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ 
SI SI(2π)

4 
δ(4)(0) e−S̃I − G−1 ϕ(k)ϕ(−k)e− ̃ + ϕ(k) 

δ
e− ̃ = 0. (17)

δϕ(k) 

The last term in this equation is still complicated. Consider further 

δ2 
SI0 = 

ˆ 
Dϕ 

(
e−S0− ̃

) 
. (18)

δϕ(k)δϕ(−k) 

From this, we have 

4 
δ(4)(0)G−1 

⟨ ⟩ ( )2 
⟨ 

SI 

⟩ ⟨ 
δ 

⟩ ⟨ 
δ2 

SI 

⟩ 

(2π) e− ̃ G−1 ϕ(k)ϕ(−k)e− ̃ − 2G−1 ϕ(k) e− ̃ + e− ̃ = 0. (19)� 
SI − � δϕ(k) 

SI 

δϕ(k)δϕ(−k) 

If we multiply 17 by 2G−1 and add the result to (19), we obtain ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ 
4 
δ(4)(0)G−1 e−S̃I G−1 SI e−S̃I(2π) � 

( )2 
ϕ(k)ϕ(−k)e− ̃ + 

δ2 

= 0. (20)− 
δϕ(k)δϕ(−k) ⟨ ⟩ 

SIEliminating ϕ(k)ϕ(−k)e− ̃ between (15) and (20) gives ⟨ ⟩ ˆ ⟨ ⟩ 
d 1 d4k dG� δ2 

Λ e−SI −U = Λ e−SI −U 

dΛ 
− 
2 (2π)

4 dΛ δϕ(k)δϕ(−k) 

1 
(2π)

4 
δ(4)(0) 

ˆ 
d4k 

Λ 
d log G� ⟨ 

e−SI −U 
⟩ 
.4− 

2 (2π) dΛ 

Here, the second term is a constant, and so we have 

d 1 d 
ˆ 

d4k 
Λ U = V4Λ 4 log G�(k), (21)
dΛ 2 dΛ (2π)

where V4 = (2π)4 
δ(4)(0), and so 

1 
ˆ 

d4k 
U(Λ) = U0 + V4 4 log G�(k) (22)

2 (2π)

where U0 is independent of Λ, and 

Λ 
d
e−SI = − 

1 
ˆ 

d4k 
4 Λ 

dG�(k) δ2 

e−SI , (23)
dΛ 2 (2π) dΛ δϕ(k)δϕ(−k) 

or, equivalently, 
d 1 

ˆ 
d4k dG�(k) 

[ 
δSI δSI δ2SI 

]
Λ 
dΛ 

SI =
2 (2π)

4 Λ 
dΛ δϕ(k) δϕ(−k) 

− 
δϕ(k)δϕ(−k) 

. (24) 
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