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Figure 1: An element A of the manifold of the Lie group G, and the Lie algebra g as the tangent space of the
identity element.

Some facts about Lie groups and Lie algebras:

1.

Different Lie groups can have the same Lie algebra. The Lie algebra determines the Lie group up to
discrete choices of global structure. For example, SU(2) = S3, SO(3) = S3/Z5.

An invariant subalgebra is a subset of a Lie algebra g’ C g which is closed under the action of g.
That is, [g,g'] C ¢’. A simple Lie algebra is a Lie algebra which does not contain invariant subalgebras
and which is not Abelian. The complex simple Lie algebras are completely classified: su(n), so(2n),
s50(2n+ 1), sp(n), Eg,7s, Fu and Gy are the only possibilities.

For a compact Lie group, it is always possible to choose a basis of T, so that fope = f§. is truly
antisymmetric (there is no distinction between upper and lower indices). All internal symmetry groups
are compact. For example, SU(n) (the set of n x n unitary matrices):

U=expliAT,], a=1,...,n* — 1, (1)
where
T (T,) =0, (T.)" = T., (2)
that is, the generators are hermitian and traceless, and hence we can choose
[Ta7 Tb} = Z.fabcjjca (3)
where the fu;. are fully antisymmetric.
(1
Physically, for example considering ¥ = with an SU(n) symmetry, we find a set of associated
Un

Noether charges Qa, a = 1,...n% — 1, satisfying the Lie algebra commutation relations, {Qa,Qb] =

i fachc~ Then the transformations on W are generated by the Noether charges:

U = exp [A°Qu] (4)

where [e“@a,\lf] = e?T, V. That is,
UvUt =Uw, (5)
where U is given in (1). This is checked explicitly for SU(2) in the problem set.
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1.2: THE GAUGE PRINCIPLE (QUANTUM ELECTRODYNAMICS REVISITED)

Referring back to the U(1) invariant Lagrangian we studied in lecture 1:
Z = —i@(“/”au —m)ip, (6)

which is symmetric under ¥(t, %) — e!®1)(t, Z), we note that for the Lagrangian to be symmetric, it is necessary
that « is not position-dependent. That is, all spacetime points transform in the same way. The transformation is no
longer a symmetry for general a = a(x), that is, if we allow different phase rotations at different spacetime points.
The mass term is invariant under these more general transformations. The kinetic term, however, transforms as

0T = 0,(° DU (x)) = 9, (U()) + i, (a(x)) e T (), (7)

where we have kept the x-dependence explicit. The second term is the problem. We want to construct a theory
(i.e. a Lagrangian) which is invariant for a general a(z), that is, a theory with a local U(1) symmetry. The answer
involves the introduction of a new vector field, and leads to quantum electrodynamics, as studied in 8.323. This
example, in fact, embodies a deep principle: the principle of gauge invariance. As we will discuss,

Local symmetries = Interactions,
Local U(1)symmetry = Electromagnetic interaction,

Local U(n)symmetries = non-Abelian gauge interactions.

To illustrate this principle, we will now “rederive” Quantum Electrodynamics from the requirement of local U(1)
symmetry. We would like to construct a theory which is invariant under

U(t, T) — e @y(t, T), (8)

for general a(z), also called a gauge transformation. An immediate consequence of (8) is that the ordinary
derivative loses its physical meaning. Consider the derivative along some direction n* :

U@+ en) — U(@)

€

i1
"o = Iy

(9)

If we can rotate ¢ (z + en) and (x) independently, (9) does not have a definite meaning, as can be seen from the
last term in (7). That is, it does not make sense to compare the value of ¥(z) at different points. So, to write down
a sensible theory including kinetic terms for 1), we need to introduce a new derivative, D,,, such that:

Dp(x) — e D (). (10)
To do this, assume we have an object U(y, x) that transforms under (8) as
Uy ) = WU (y,x)e . (11)

U(y, z) “transports” the gauge transformation from =z — y.

X

Figure 2: The parallel transport U(y, z) transports the gauge transformation from x to y.
That is, ‘ 4 . ‘
Uly, z)p(x) — WU (y, z)e @ i@ (z) = W (U (y, 2)h(z)), (12)

transforming as v (y). Since ¢ (y) and U(y, )¢ (z) have the same transformation properties, ©¥(y) — U(y, z)i(x) is
well-defined.
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Now take y = x 4 en, and define

Y(x +en) — U(z + en, z)(x) .

H =1
nt D, ll_r)r(l) ; (13)
By construction, _ )
Dy — lim ¢+ D, = D, (14)
e—
and _
L = —P(" Dy — m) (15)

is invariant under (8). We now want to construct U(y,z) explicitly. Since only local phase multiplication is a
symmetry, U(y, ) should be a phase, as we don’t want to change other properties of 1(x). We begin infinitesimally:

Ulx+en,x) =1+ien"eA,(x)+ ..., (16)

where e is a constant and A, () is a real vector field. Under the transformation (8),

Uz + en,z) — T (2 + en, z)e " ®) (17)
so that _ )
1+ ieent A, (z) — e @) (1 4 ien”Oya(x))(1 4+ ieen“Au(x))e_w‘(r), (18)
and hence .
A (x) — Au(x) + gaua(x). (19)

Finally, we have for the covariant derivative D,,:
Dy = 0,9 — ieAp = (0, — ieAp) . (20)

Inserting the transformation laws for A, (z) and ¢(x): (19) and (8), respectively, we have that D, (x) transforms as
P(z). We want A, (z) to be a dynamical field, and hence we require a kinetic term for this vector field, which should
be invariant under (19). To construct this, we note that D, (D, ) transforms as 1, and so does (D, D, — D, D),
so we define

[D,,D,] = [0, —ieA,, 0, —ieA,| = —ieF,

Hs
F,=0,A,-0,A,, (22)

and we have that F},, 4 transforms as v, so that F},, is invariant.
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