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Lecture 15

3.3: ANOMALOUS MAGNETIC MOMENT

In the last lecture, we showed that the physical vertex I'*(kq, ko) takes the general form

—_ o"q,
iTH(ky, ko) =€ {fy”Fl(q2) -3 g Fg(qQ)} , (1)
m
and in the limit k1 — ko = q¢ — 0,
_— m o’ qy T
il (k17k2) — e = 2m FQ(O) :Feff(klka)‘ (2)
This vertex is reproduced by the effective Lagrangian,
- - 1eF5(0) - .,
«iﬂeff = *Zw(’}/“au - m)"/’ - eAu"/)'YM'Y - ﬁ()ﬂ)a# Fulﬂ/L (3)

Consider the case where 1) is non-relativistic, in a classical electromagnetic background A,,. That is,

P’ ~mu?4+m D~ muv,

2

A% ~ mo A~ mu,

where v < 1. This is consistent, because D* = O* — ie A" = i(p — eA)*, so, A and A interact with 1) and give it
energy of the order mv?, and momentum of the order mv. The Dirac equation now has the form

F5(0
(v(0, —teA,) —m) + ¢ 437(1 )Fw,o‘“’w =0, (4)
or i0s) = Hv, with
- -, 0 ing(O) 0 v

Here, 3 = —iv? and o = —iy%4’. We will choose the basis

or, equivalently,

From this, we find
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We now write 7 = ( ¢ x ), Fo; = E; and F;; = €;;1Bg. The Dirac equation reduces to two coupled partial
differential equations:

. e F. _ .
0 = md+3.(F—eh)x +eA%b + % [5.EX—iE.B¢} :
- ek _, -

i0x = —mx+3.(F—ed)p+eAy + % {—E.E¢+i&.3x} .
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We now let ¢ = e ™ ®, y = e~ X. As i0p ~ [m + O(mv?)] ¢, ® and X describe fluctuations with
AE ~ mv?. In terms of these fields, taking the limit v — 0, the equations reduce to

ey (0 .
0,0 = GAX +eA'D + % |—i7.B0] + 0(?),
0 = —2mX + 3.7 + O(v?),

where @ = p'— eff, and so, solving the second equation for X, and inserting the result into the first equation, we
obtain

1
1 F(0) . =5
0,0 = —(3.7)20 +eA'D + & 205 Fo.
2m 2m
Now, o o .
(6.7)? = g0 m'm = (8;j +ieyrop)T'n) = 7% + ed.B, (8)
as [ﬂ'i7 wj} = —jeF" = —tie€y i, B, and so we arrive at the following time-evolution equation in the limit v — 0:
1 - e _
10,0 = | —(p—eA)? +eA’ + —(1 + F»(0))5.B| ®.
08 = |5 (5 eA) + A’ + (14 Fy(0))3 ©)

We recognise the first two terms as the kinetic energy of a particle in an electromagnetic field and the electrostatic
potential energy, respectively, and the third term takes the form of a magnetic interaction,

Hmag = _ﬁ~§a (10)
with .
i= 901+ F(0)2 =~8 (11)
b= "om 2005 ’

with § = g the spin, and v = 5--g the gyromagnetic ratio. Classically, we expect g = 1, and in the Dirac equation
of quantum mechanics, we find g = 2. We see that in the case of quantum electrodynamics, we have
g =2+ 2F5(0). The additional term of 2F5(0) is known as the anomalous magnetic moment. We will now

explicitly compute the lowest order correction to the magnetic moment.
3.3.1: One-loop correction to the magnetic moment

To lowest order, the correction to the physical vertex function is given by

ko
q ko +1
F;f(k‘l,k‘z) = l
k1 +1
k1
L d*l
= (=ie)® [ g Solla + D" Sy + D7 D), (12)
where So(k) = % and D,SOJ = % Explicitly, we have
: : d*l P [i(Ka + 1) +m] v [i(kh + 1) + m] v
Dl k) = (ie) (12 () [t R DA D
(2m)* (k1 + D)2 + m?2 —i€) ((ka +1)2 +m?2 — ie) (12 — i¢)
We can combine the denominators using the Feynman trick,
L /ld /ld /1d §(z1 + @2+ 23— 1) 2 (14)
_— = T T z30(x1 + T2 + T3 — ,
A1 Az Az 0 ! 0 2 0 S 2T (2141 + 2945 + 2343)°
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reducing our result for '} to

1 1 1 N
= 263/ dxl/ dﬂ?g/ drxsd(xy + 2o+ x5 — 1) —, (15)
0 0 0 D3

where
N =" [i(ky + 1) +m]y" [i(ky +1) +m] 7y, (16)

and

S
|

1 [(%1 +10)% + mz} + x2 [(%2 + 02+ m2] + x5l — e
= (l + z1k1 + $2k2)2 + xl(l — xl)k% + xz(l — xz)k’g — 2129k ko + (331 + $2)m2 — €.
We may shift the variable in the integral | — p =1 + x1k1 + x2k», and rewrite the result in terms of ¢? instead of

]{il.kg, giving
D = p* + z1200° + (21 + 22)*m? — ie. (17)

Further,

=2
=
|

7 Lilp — waky + (1= 22)ky) +m] o [i(p+ (1 — 21)ky + 22ky) +m] 7
= PP 7 [k + (1= z2)ky) +m] v [i((1— 21)ky + 22ky) +m]
+terms linear in p.

The terms linear in p evaluate to zero in the integral, as they are odd, so we can discard them. The first term can
be evaluated using the identity v*dh¢y, = —2¢h¢, resulting in

—V Py Py = 2Py + App”t = 2% + 4p¥ P (18)
This last term is again odd in the individual components of the momentum integral, and so reduces to 2 zim Y
inside the integral. So, the contribution to the integrand from the first term is

—pyH. (19)

We see that this term contributes to Fy, and we know by the Ward identity that F3(0) is zero. We can disregard
this term here. The second term is p—independent, convergent in the ultraviolet, and contains a contribution to
F5. We use the identities

YAy = 49,
YAy = =29,
and so the relevant contribution to N* is
Nt = =2[—iwafy +i(1 — z1) k] [—imify +i(1 — 22)fy]

+4m [i(1 — 221K 4 (1 — 220)kh] — 2m2yH.

We discard the last term, which again contributes to Fy. We again use the fact that I'* appears in the
combination (k)T u(ky) for on-shell spinors, and that @, = —imi, f;u = —imu, for on-shell solutions. So, the
relevant part of N* in the integrand can be written as

Nt = =2[—zam+i(1 — )k | [aim +i(1 = 22) ]
+4im [(1 — 2zq)kY 4+ (1 — 2z,)k5] .

Using the identity fy* = —v*f 4 2k*, and again retaining only the parts contributing to Fb, the relevant part of
N* reduces finally to

NP =2im(zy + x2)(1 — 1 — z2) (K} + K). (20)
Thus, we find
D =A*(...) + (k) + k5)B, (21)
with Lo . .
B = 263/ / / drydxodrsd(xy + o + 23 — 1)/ d’p 2im(@ + 22)(1 = 21 — 72) —3- (22)
o Jo Jo (27)* (2 + 12202 + (21 + 22)2m2 — i€)
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Figure 1: Illustration of the Wick rotation of the variable qq.

Applying the Wick rotation, p° = ip}, d'p = id*pg, we can explicitly evaluate

d*pp 1 1
= 2
/ 2m)* (bE +A)  3272A° (23)

and so Lo
1 .733(1 — .733)
B = —4me’ — drydzodrsd -1 24
me” 2o /0 /0 /0 x1dzadrsd(ry + 2 + 23 )x1x2q2 iy p——C—y (24)
and, finally, for the form-factor F; we obtain the result
2m e? [t 123 x3
F():_fBQ:o:—/d/ d
2(0) e (q ) ir J, Z3 . x21—x3
_ e? /1 d _ e? o«
42 I T e T o
where o = - ~ ﬁ, and so
e
g=2+2F2(0)=2+;. (25)

ae = % = 5= = 0.0011614.. at one-loop level. Experimentally, a. = 0.00115965218073(28) (Gabrielse 2008).

Theoretically, the result is decomposed as
«Q a2 a3 a4
R0 = 5o +a (3) +a (T) +a () 2%
2(0) 27r+a2 s +as T +a m (26)
where the second coefficient, ao, consists of seven diagrams, and was calculated in 1957. The third coefficient
consists of 72 diagrams, and was calculated in 1996. The fourth coefficient, a4, consists of 891 diagrams.
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