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3.3: ANOMALOUS MAGNETIC MOMENT 

In the last lecture, we showed that the physical vertex Γµ(k1, k2) takes the general form [ ]
iΓµ(k1, k2) = e γµF1(q 

2) − 
σµν qν 

F2(q 
2) , (1) 

2m 

and in the limit k1 − k2 = q −→ 0, [ ]
iΓµ(k1, k2) −→ e γµ − 

σ

2

µν 

m

qν 
F2(0) ≡ Γµ (k1, k2). (2) eff 

This vertex is reproduced by the effective Lagrangian, 

¯ ¯Leff = −iψ̄(γµ∂µ − m)ψ − eAµψγ
µγ − 

ieF2(0) 
ψσµν Fµν ψ. (3) 

4m 

Consider the case where ψ is non-relativistic, in a classical electromagnetic background Aµ. That is, 

p 0 ∼ mv 2 + m p⃗ ∼ mv, 

A0 ∼ mv 2 A⃗ ∼ mv, 

where v ≪ 1. This is consistent, because Dµ = ∂µ − ieAµ = i(p − eA)µ, so, A0 and A⃗ interact with ψ and give it 
energy of the order mv2 , and momentum of the order mv. The Dirac equation now has the form 

(γµ(∂µ − ieAµ) − m)ψ + 
eF2(0) 

Fµν σ
µν ψ = 0, (4) 

4m 

or i∂tψ = Hψ, with 

H = mβ + ⃗ p − eA⃗) + eA0 ieF2(0) 
γ0σµν Fµν . (5) α.(⃗ + 

4m 

Here, β = −iγ0 and αi = −iγ0γi . We will choose the basis 

γ0 = i 

( 
I 
0

0 
) 

, γi = i 

( 

−
0 
σi 

σ
0 

i 
) 

, (6) −I 

or, equivalently, ( ) ( )
I 0 0 σ⃗ 

β = , α⃗ = . (7) 
0 −I −σ⃗ 0 

From this, we find 

i [ ] ( 
σi 

)
γ0σ0i = γ0 γ0, γi =

0 
,

2 −σi 0 

γ0σij i [ ] 
= −iϵijk 

( 
σk 0 

)
= γ0 γi, γj . 

2 0 −σk 

We now write ψT ≡ 
( 
ϕ χ 

) 
, F0i ≡ Ei and Fij = ϵijkBk. The Dirac equation reduces to two coupled partial 

differential equations: 

i∂tϕ 

i∂tχ 

= 

= 

mϕ + ⃗σ.(p⃗ − e ⃗A)χ + eA0ϕ + 
ieF2(0) 
2m 

[
σ⃗. ⃗Eχ − iσ⃗. ⃗Bϕ

] 
, 

−mχ + ⃗σ.(p⃗ − e ⃗A)ϕ + eA0χ + 
ieF2(0) 
2m 

[
−σ⃗. ⃗Eϕ + iσ⃗. ⃗Bχ

] 
. 

1 
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We now let ϕ = e−imtΦ, χ = e−imtX. As i∂tψ ∼ 
[
m + O(mv2)

] 
ψ, Φ and X describe fluctuations with 

∆E ∼ mv2 . In terms of these fields, taking the limit v −→ 0, the equations reduce to 

i∂tΦ = σ.⃗
ieF2(0) 

[
−i⃗ Bϕ

] 
3),⃗ πX + eA0Φ+ σ. ⃗ + O(v 

2m 
0 = −2mX + ⃗σ.π⃗Φ+ O(v 2), 

where π⃗ = p⃗− eA⃗, and so, solving the second equation for X, and inserting the result into the first equation, we 
obtain 

1 
X = σ⃗.π⃗Φ,

2m 

i∂tΦ = 
1

(σ⃗.π⃗)2Φ+ eA0Φ+ 
eF2(0)

σ⃗. B⃗Φ. 
2m 2m 

Now, 
(σ⃗.π⃗)2 = σiσj π

iπj = (δij + iϵijkσk)π
iπj = π2 + eσ⃗. B, ⃗ (8) 

as 
[
πi, πj 

] 
= −ieF ij = −ieϵijkBk, and so we arrive at the following time-evolution equation in the limit v −→ 0: [ ]

i∂tΦ = 
1

(p⃗− eA⃗)2 + eA0 + 
e 

(1 + F2(0))σ⃗. B⃗ Φ. (9) 
2m 2m 

We recognise the first two terms as the kinetic energy of a particle in an electromagnetic field and the electrostatic 
potential energy, respectively, and the third term takes the form of a magnetic interaction, 

Hmag = −⃗ B, µ. ⃗ (10) 

with 

⃗ 2(1 + F2(0)) S, (11)µ = − 
2

e

m 
σ⃗ 
2
= γ⃗

with S⃗ = σ⃗ 
2 the spin, and γ = 2

e
m g the gyromagnetic ratio. Classically, we expect g = 1, and in the Dirac equation 

of quantum mechanics, we find g = 2. We see that in the case of quantum electrodynamics, we have 
g = 2 + 2F2(0). The additional term of 2F2(0) is known as the anomalous magnetic moment. We will now 
explicitly compute the lowest order correction to the magnetic moment. 

3.3.1: One-loop correction to the magnetic moment 

To lowest order, the correction to the physical vertex function is given by 

k2 

q k2 + l


Γµ 
1 (k1, k2) ≡ µ l


k1 + l 

k1 

d4l 
γρS0(k2 + l)γµS0(k1 + l)γν D(0)= (−ie)3 

ˆ 
(2π)4 νρ (l), (12) 

−ik/−m (0) −igµ�where S0(k) = k2 +m2−iϵ and Dµν = l2−iϵ . Explicitly, we have 

γρ γµ γν 

Γµ(k1, k2) = (−ie)3(−1)2(−i) 
ˆ 

d4l 
[
i(k/2 + /l) + m

] [
i(k/1 + /l) + m

] 
. (13)1 (2π)4 ((k1 + l)2 + m2 − iϵ) ((k2 + l)2 + m2 − iϵ) ((l2 − iϵ) 

We can combine the denominators using the Feynman trick, 

A1A

1 

2A3 
= 
ˆ 1 

dx1 

ˆ 1 

dx2 

ˆ 1 

dx3δ(x1 + x2 + x3 − 1) 
2 

3 , (14) 
0 0 0 (x1A1 + x2A2 + x3A3)
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reducing our result for Γµ 
1 to 

Nµ 

Γµ 
1 = 2e 3 

ˆ 1 

dx1 

ˆ 1 

dx2 

ˆ 1 

dx3δ(x1 + x2 + x3 − 1) 
D3 

, (15) 
0 0 0 

where 
Nµ ≡ γν [i(k/2 + l) + m] γµ [i(k/1 + l) + m] γν , (16) 

and 

2 2D x1 
[
(k/1 + l)2 + m 

] 
+ x2 

[
(k/2 + l)2 + m 

] 
+ x3l

2 − iϵ≡ 

= (l + x1k1 + x2k2)
2 + x1(1 − x1)k1

2 + x2(1 − x2)k2
2 − 2x1x2k1.k2 + (x1 + x2)m 2 − iϵ. 

We may shift the variable in the integral l −→ p = l + x1k1 + x2k2, and rewrite the result in terms of q2 instead of 
k1.k2, giving 

D = p 2 + x1x2q 
2 + (x1 + x2)

2 m 2 − iϵ. (17) 

Further, 

Nµ = γν 
[
i(/p − x1k/1 + (1 − x2)k/2) + m

] 
γµ 

[
i(/p + (1 − x1)k/1 + x2k/2) + m

] 
γν 

= −γν 
/pγ

µ
/pγν + γν [i(x1k/1 + (1 − x2)k/2) + m] γµ [i((1 − x1)k/1 + x2k/2) + m] γν 

+terms linear in p. 

The terms linear in p evaluate to zero in the integral, as they are odd, so we can discard them. The first term can 
be evaluated using the identity γν a//b/cγν = −2a//b/c, resulting in 

−γν 
/ / = −2/p/

µ = −2p νpγµpγν pγµ + 4/pp
2γµ + 4p pµγν . (18) 

gThis last term is again odd in the individual components of the momentum integral, and so reduces to p 2 

4 

�µ 

γν 

inside the integral. So, the contribution to the integrand from the first term is 

−p 2γµ. (19) 

We see that this term contributes to F1, and we know by the Ward identity that F1(0) is zero. We can disregard 
this term here. The second term is p−independent, convergent in the ultraviolet, and contains a contribution to 
F2. We use the identities 

γν γαγβ γν = 4g αβ , 

γν γαγν = −2γα , 

and so the relevant contribution to Nµ is 

Nµ = −2 [−ix2k/2 + i(1 − x1)k/1] γ
µ [−ix1k/1 + i(1 − x2)k/2] 

+4m [i(1 − 2x1)k1 
µ + i(1 − 2x2)k

µ] − 2m 2γµ.2 

We discard the last term, which again contributes to F1. We again use the fact that Γµ appears in the 
combination ū(k2)Γµu(k1) for on-shell spinors, and that ūk/2 = −imu,¯ k/1u = −imu, for on-shell solutions. So, the 
relevant part of Nµ in the integrand can be written as 

Nµ = −2 [−x2m + i(1 − x1)k/1] γ
µ [−x1m + i(1 − x2)k/2] 

+4im [(1 − 2x1)k
µ + (1 − 2xx)k

µ] .1 2 

Using the identity / = −γµ/ , and again retaining only the parts contributing to F2, the relevant part of kγµ k + 2kµ

Nµ reduces finally to 
Nµ = 2im(x1 + x2)(1 − x1 − x2)(k1 

µ + kµ). (20)2 

Thus, we find 
Γµ = γµ(. . .) + (kµ + kµ)B, (21)1 1 2 

with 

B = 2e 3 
ˆ 1 ˆ 1 ˆ 1 

dx1dx2dx3δ(x1 + x2 + x3 − 1) 
ˆ 

d4p 2im(x1 + x2)(1 − x1 − x2) 
. (22) 

0 0 0 (2π)4 (p2 + x1x2q2 + (x1 + x2)2m2 − iϵ)3 
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Re(q)

Im(q)0

0

Figure 1: Illustration of the Wick rotation of the variable q0. 

Applying the Wick rotation, p0 ≡ ip4 , d4p = id4pE , we can explicitly evaluate E 

ˆ 
d4pE 1 1


(2π)
4 (pE 

2 +∆) 
= 

32π2∆ 
, (23)


and so 
1 
ˆ 1 ˆ 1 ˆ 1 x3(1 − x3)

B = −4me 3 

32π2 
dx1dx2dx3δ(x1 + x2 + x3 − 1) 

x1x2q2 + (1 − x3)2m2 
, (24) 

0 0 0 

and, finally, for the form-factor F2 we obtain the result 

F2(0) = − 
2

e

m
B(q 2 = 0) = 

4

e

π 

2 ˆ
0

1 

dx3 

ˆ
0

1−x3 

dx2 
1 − 
x3 

x3 

e2 ˆ 1 e2 α 
= dx3x3 = = ,

4π2
0 8π2 2π 

e 2 1where α ≡ ∼ 137 , and so 
α

4π 

g = 2 + 2F2(0) = 2 + . (25)
π 

g−2 α ae = 2 = 2π = 0.0011614.. at one-loop level. Experimentally, ae = 0.00115965218073(28) (Gabrielse 2008). 
Theoretically, the result is decomposed as 

α ( α )2 ( α )3 ( α )4 
F2(0) = + a2 + a3 + a4 , (26)

2π π π π 

where the second coefficient, a2, consists of seven diagrams, and was calculated in 1957. The third coefficient 
consists of 72 diagrams, and was calculated in 1996. The fourth coefficient, a4, consists of 891 diagrams. 

4 



MIT OpenCourseWare
http://ocw.mit.edu 

8.324 Relativistic Quantum Field Theory II
 
Fall 2010 
 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



