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Lecture 13 

We continue our analysis of renormalization in quantum electrodynamics from last lecture. 

3.1.4: Charge Renormalization 

Consider the vertex corrections: 

Gµ�� (k1, k2) ≡ 
ˆ 
d4 y1d

4 y2 e 
ik1.y1−ik2.y2 ⟨0| T (Aµ(0)ψ�(y1)ψ̄� (y2)) |0⟩ 

k2 − k1, µ 

k2, β 

= , (1) 

k1, α 

where, again, these are defined in terms of bare quantities. We introduce an effective vertex, Γ, defined by 

Gµ�� (k1, k2) = Dµδ (k2 − k1)S��(k1)Γ
δ (2) �β(k1, k2)Sβ� (k2). 

In perturbation theory, 

Γµ (k1, k2) = + + . . . 

= −ieB γ
µ + . . . . (3) 

We note that only 1PI diagrams contribute, by the definition. We will now show that gauge invariance, in the 
form of the Ward identities, puts important constraints on the structure of Γµ Acting on the generating 
functional for connected diagrams, and setting Jµ = η = η̄ = 0, we have [

δ(4)(x − y1) 
δ2W δ2W 

η�(x)δη� (y2) 
− δ(4)(x − y2)

δ¯ δη̄�(y1)δη� (x)

]
, 

J=α=ᾱ=0 

(4) 

1 
∂2∂µ δ3W 
ξ δJµ(x)δη̄�(y1)δη� (y2) 

= ieB
J=α=ᾱ=0 

or, equivalently, ]
(5) 

Changing basis to momentum space, we have ∂µ , where qµ ≡ (k2 − k1)µ. We can set x = 0 by applying ´ −→ iqµ

d4y1d
4y2 e

ik1.y1−ik2.y2 on both sides, giving 

i − 
ξ
q 2 qµDµδ (q)S��(k1)Γ�β

δ (k1, k2)Sβ� (k2) = eB [S�� (k2) − S�� (k1)] . (6) 

In the last lecture, we showed 1 ∂2∂µDµδ = −kδ . And so, the result, when written in terms of matrices in spinor η 
space, reduces to 

−S(k1)(qδ Γ
δ )S(k2) = eB (S(k2) − S(k1)) , (7) 

[1 
∂2∂µ ⟨0 T (Aµ(0)ψ�(y1)ψ̄� (y2)) δ(4)(x − y1) ⟨0 T (ψ�(x)ψ̄� (y2)) 0⟩ − δ(4)(x − y2) ⟨0 T (ψ�(y1)ψ̄� (x))0⟩ = eB 0⟩| | | | | | . 
ξ 

or, equivalently, 
qδ Γ

δ (k1, k2) = eB S−1(k2) − S−1(k1) , (8) 

= k, k on-shell and 

)(
where q ≡ k2 − k1. This is an important constraint. To see the implications, we consider k1 

q −→ 0, meaning k2 is also close to on-shell. Then 

S−1(k1) ≈ − 
Z

1 

2 
(ik/1 + m − iϵ) + . . . 

S−1(k2) ≈ − 
Z

1 

2 
(ik/2 + m − iϵ) + . . . 
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µ 

k 

k 

where m here is the physical mass. We then have 

qδ Γ
δ (k, k) = − 

eB 
i/q, (9) 

Z2 

or 

Γδ (k, k) = − 
ieB 

γδ (10)
Z2 

when k is on shell. The physical charge we measure should be 

Γµ (k, k) = phys

≡ −iephysγµ. (11) 

where k is on-shell and we are using the physical fields. In other words, consider 

G(
µ
phys)(k1,k2) = 

ˆ 
d4 y1d

4 y2 e 
ik1.y1−ik2.y2 ⟨0| T (Aµ(0)ψ�(y1)ψ̄� (y2)) |0⟩ (12) 

where the fields are now the physical fields, rather than the bare fields. Then 

G(
µ
phys)(k1, k2) = Dµδ (q)S(k1)Γphys

δ (k1, k2)S(k2) (13) 

where Dµδ and S are again here for the physical fields. Since √ √ 
AB DB ψB SB 

µ = Z3Aµ, µδ = Z3Dµδ , = Z2ψ, = Z2S, (14) 

we have that √ √ 
GB

µ = Z3( Z2)
2G(

µ
phys), (15) 

where GB ≡ DB SB ΓB SB and G(phys) = DSΓ(phys)S. From this, we have that √ 
Γδ (k, k) = Z3Z2Γ

δ (16)B (k, k) 

and so √ 
e = Z3eB . (17) 

eB eThe dependence of e on Z2 cancels precisely as a result of ΓB ∝ . That = 
√
Z3 only depends on Z3, the field Z2 eB 

strength renormalization of the photon, has important implications: the ratio is universal for all charged fields. 
proton electron proton Suppose that eB = eB . Then it is necessarily true that e = eelectron, despite the proton and electron 

interacting very differently and having different masses. If e
e 
B 

depended on Z2, for example, then we would have 
an extremely difficult time in explaining why eproton = eelectron , as their respective values of Z2 are very different. 
Finally, in terms of renormalized quantities: 

qδ Γ
δ (k1, k2) = e 

[
S−1(k2) − S−1(k1)

] 
. (18) 

We note additionally that for k1 and k2 on-shell, but k1 = k2,̸

qδ Γ
δ (k1, k2) = 0. (19) 

This is an example of a large class of identities. These are known as the general Ward identities. These identities 
are obtained by acting on the generating functional for connected diagrams with 

δ δ δ δ δ δ 
. . . . . . . . . , (20)

δJδ1 (z1) δJδ2 (z2) δη̄(y1) δη̄(y2) δη(x1) δη(x2) 

and then setting Jµ = η̄ = η = 0. The resulting expression is most transparently written diagramatically in 
momentum space: 

pr 
kµ qn pr qn pr qn    

. . . . . . .. . ∑ .. .   .. .  . . .  (21)= eB  qi − k  −  pi + k 
p2 . .q2 i p2 q2. . . . 
p1 q1 p1 q1 p1 q1 
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where each external line should be considered as an exact photon or fermion propagator, except that associated 
with kµ on the left-hand side, which should be amputated. 

Remarks: 

1.	 Suppose we attach to Γµ a photon propagator at the qδ . If all the external propagators are on-shell, 
the longitudinal part of the propagator does not contribute as the inner product of this with qδ is zero. 
This enforces gauge invariance. 

2.	 Suppose we attach to Γµ an external photon line, that is, ϵµΓµ(k, . . .). This is invariant under ϵµ −→ 
ϵµ + kµ, which is a gauge transformation Aµ −→ Aµ + ∂µΛ. 

3.	 Only charged particles need to be on-shell. Other photon lines or any other neutral particles (if they 
exist) can be off-shell, since they they do not transform under gauge transformations. 

4.	 For Ward identities to be valid, regularization should preserve gauge invariance. 
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