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Lecture 12

3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS

3.1: RENORMALIZED LAGRANGIAN

Consider the Lagrangian of quantum electrodynamics in terms of the bare quantities:

1 w T )
fFBF‘B —sz(v“(au—zeBAE)—mB)wg. (1)

32_4 pv

We use the convention:
{7M7 ’YV} = 277#1/’ (2)

v=-1, A=-v, A=
- 2
o=y, [k} =k'y, ¥ =k

where, in four dimensions, (n*¥) = diag(—1,1,1,1). We expect to find the mass and field renormalizations.

Note: we will omit the “B” signifying bare quantities in what follows.

along with vertex corrections
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We will look at how to introduce renormalized quantities.
3.1.1: Fermion self-energy

We have that ~
Sap(®) = (0] T(Ya(z)¥5(0) [0), (5)

and

1PI = —-X

So(k) + So(—E)SO + SO(—E)SO(—E)SO + ...
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where we have omitted the spinor indices in the second and third lines: these are to be read as matrix equations.
Hence, we have that

STt=8;1+ 3. (7)
Recall that
-1
So=—F——, —Z:———&———+..., (8)
if+mp
and so
St = —(if +mp)+ %, (9)

and we have for the fully interacting two-point function

-1

= . 1
S i%+m37i672 (O)

Note that ¥ = 3(F), since it can only depend on § and k2. Even though it is a function of matrix, we can treat it
as an ordinary function. The physical mass is defined by § = im, so that

—m+mp — X(im) = 0. (11)

We note that, again, ¥ will be divergent. Near the pole, we have that

7
S~ — 12
ikt +m — e (12)
with Z, =144 % bim The relations between the bare and physical quantities are given by
=1m
mp =m-+0m, PYp=+/Z2¢ (13)
where m = X(im) and 9 is the renormalized field.
3.1.2: Photon self-energy
Similarly, we have that
Dy () = (0| T(A] (2) A7 (0) |0) (14)
and
1PI = Il
Duy(/{) = e Ve W e U e N '\?’@Y\' v 4 onp % v 4.
= Dg(k) + Do(iI1) Dy + Do (iI1) Do (¢I1) Do + . . .
1
= Dj—M — 1
01 411D, (15)
Hence,
(iD)"" = (iDg) " — 1L (16)
Recall that
1 kH kY
D)"Y = m—(1—-&)——
g k2 — je n ( 5) k2
1 1% 1%
= 2 [Pr” +&PL"],
where we have defined the transverse projector Pr” = nH" — k;l;”’ and the longitudinal projector P;” = kzljy. Note

that it is not a coincidence that the propagator can be built from these two tensors, n*¥ and k*k: they are the
only two two-tensors allowed by symmetry. These projectors satisfy the properties

PTI’WPVT)\:PTHW Pfl/PuLA:PL#,\v PJF“WPlfIA: : (17)
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Note: T and L are just labels here, and the placing of these indices does not carry meaning. Hence, we have that

(iDo)™" = K [P;;” + 1PL’*”} . (18)

3

We may also expand II*" as

= P fr(k*) + P fu(k?)
S ) (19)
Therefore,
D)™ = PR = gy + s — ), (20)

and we have for the full interacting photon two-point function,

v 1 v 1

We observe that if fr (k?* = 0) # 0, a mass will be generated for the photon. Because II*” comes from 1PI
diagrams, it should not be singular at k% = 0, and so fr — fr = O(k?), as k — 0. We will show that gauge
invariance ensures that no mass is generated from the loop corrections.

3.1.3: Ward identities

Consider the path integral for the generating functional:
2l = [ D4,0005e 5] (22
where S = Sqpp+ [ d*z J, AL +ibp +1p 57, where we note explicitly these couplings are in terms of bare quantities.

Fapp = —3FuF™ — (5 Dy — m)p — (B A", (23)

2¢
We define the generating functional for connected diagrams, W [J,,,n,7], by

A [J;u 77777] = Wlwnl, (24)
For example,
) _ M
OIT (a(x)hp(y)) 10) = e (x )5775( )
L OPW [

(OIT(A7 () A7 (y) 0) =

7]
e )5JV( ),

Recall, for infinitesimal gauge transformations, §A, = 9, A\, §9) = iepA, and 61; = —iepA). Consider a change of
variables in the path integral:

A, — A=A, +64A,,
v — P =1+ 0,
v — A =+ 5.
Then we have i i
/ DAL DYDY S V] = / DA, DYDPe S Ant ] (25)

as this is just of a change of the dummy integration variables. Note that the measure is unchanged by this shift:

DAL DYDY = DA, DYDY, (26)
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and the action for the two sets of variables are related by
_ - 1 . _ . -
S[A,, ¢ 0] =5 [A,, ¢ 0] - g/d‘*gc D AP\ + /d4x J, 0"\ + iep A\ — ie g An. (27)

Hence, we must have

/ d'z \(z) / DA, DYDpe’S[Aw ] [—2828#/1” — 9, J" +iep(ip — Pn)| = 0. (28)
Since
Aul) ~ _iajaﬂz(x) =7 5}?(;)’
Wo) ~ —igits = Iz,
Ba) ~ i =2

o)~ o)

we have that

1 52w
S0P +0,6W(z—y)=0, 29
£ 0JH(x)dJ¥ (y) J=n=i=0 @)
that is, .
L9201 D,(x — y) + 0,0 (x —y) = 0 30
5 nv X y) + v (l' y) - Y% ( )
or, written in momentum-space, .
—%kzk“DW(k) +ky, = 0. (31)
If we now write
D,uy(k) = PEVDT(kz) + P;%I/DL(kz)v (32)
with k“P,fV = k,, the Ward identity reduces to
%kaVDL(kQ) +ky, =0, (33)
and so ]
Do) = £ 34
L) = =25, (34)

and the longitudinal part of the two-point function is completely determined. Comparing this with (21), we find
that f1,(k%) = 0, and we thus conclude that II*¥ is purely transverse. That is, from (19), we have that

kHEY
o™ = (nw -3 ) fr(k?). (35)
For IT*¥ (k) to be non-singular at k = 0, we must have
fr(k?) = K*11(k?), (36)

where II(0) is non-singular. Hence, for the two-point function in the interacting theory, we have

. T
—1i
D , = 2 PL 37
H k2 —ie 1—H(k2)+§ s (37)
Remarks:
1. The longitudinal part of D, does not receive any loop corrections: it is completely determined by the

Ward identities. The physics should not depend on this part. For example, in the Landau gauge, £ = 0,
D, is purely transverse.
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Since II(k?) is non-singular at k2 = 0, the photon remains massless to all orders. There are exceptions
to this: it is not true in quantum electrodynamics in 141 dimensions, or in theories where an additional
Higgs field is introduced.

The residue at the k2 = 0 pole is given by Zgl =1—TI(0), and we have that

Z
T 3 T
iD,, ~ R P, (38)

near k? = 0. The renormalized field is given by Aﬁ =\/Z3A,.
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