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8.324	 Quantum Field Theory II 

Problem Set 4 Solutions 

1.	 (a) We are going to use Peskin’s conventions in order not to conflict with the instructions in the problem. The 
interaction vertex for this theory is −igγµ. The amplitude for the e+e− annihilation into B is: 

iM = v̄(p+)(−igγµ)u(p−) ǫ 
∗ 

µ(q) ,	 (1) 

where p± is the momentum of e± and q is the momentum of B. We average over initial polarizations of 
the fermions and some over the final state polarizations of B to get: 
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= −
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tr [γµ/p+γµ/p−] = −
g

tr [(−2/p+)p/−] = 2g 2 p+ · p−
4 4


= g 2 q 2 = g 2M2


where in the third line we used the replacement 
� 

i ǫ
(
ν
i)
ǫ
(
µ
i)∗ 

→ (−ηµν), in the fourth we neglected the mass 
of the electron and used well-known properties of spinor and also some identities for Dirac matrices, finally 
in the fith we used the kinematics of the problem. Now the cross section is easy to calculate in the CM 
frame: 

+ − 
1 d3q 

(2π)4δ(4)(p+ + p− − q) |M|
2

σ(e e	 → B) = 
8E2	 2Eq(2π)3 

(3) 

=
1 π

δ(2E −M) g 2M2 = πg2 δ(s −M2)
2s M 

The decay rate is calculated by reusing the amplitude of our previous calculation. Here however, we average 
over B polarizations to get a factor of 1/3: 

Γ(B → e + e −) =
1 

dΠ2 
1 
|M|

2 
=

1 4g2M2 

dΠ2 = 
g2M 

(4) 
2M 3 2M 3 12π 

We conclude that 

12π2 

σ(e + e − → B) = Γ(B → e + e −)δ(s −M2) ,	 (5) 
M 

in agreement with PS Sec. 5.3, where a vector meson bound state was considered. 

(b) The Feynman graphs corresponding to the process are the same as the ones on page 168 in PS. Their 
contribution is: 

iM = v̄(p+) (−igγµ)ǫµ
∗ (qB) 

1
(−ieγν)ǫ ∗ ν(qγ) + (−igγµ)ǫµ

∗ (qγ) 
1

(−ieγν)ǫν
∗ (qB) u(p−) ,

−i(/p− − /qγ)	 i(/p+ − q/γ)
(6) 
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which after averaging over s± and summing over γ and B polarizations becomes: 

1 
|M|2 = M ∗ M 

4 
s+,s

− ,iγ ,iB 

g2e2 � � 

γµ /p− − q/γ 
γν − γν p/+ − /qγ 

γµ 

� � 

/p− − q/γ p/+ − /qγ 
�� 

= tr /p− /p+ γν γµ − γµ γν
4 (p− − qγ)2 (p+ − qγ)2 (p− − qγ)2 (p+ − qγ)2 

= 
g2

4 

e2 

tr 
(2p− 

1 

· qγ)2 
p/−γ

µ(/p− − q/γ)γ
ν/p+γν(p/− − /qγ)γµ 

(7) 

− 
1 

/p−γ
µ(p/− − /qγ)γ

νp/+γµ(p/+ − q/γ)γν
(2p− · qγ)(2p+ · qγ)


1

− p/−γ

ν(/p+ − q/γ)γ
µ/p+γν(p/− − /qγ)γµ

(2p− · qγ)(2p+ · qγ)

+
(2p+ 

1 

· qγ)2 
p/−γ

ν(p/+ − /qγ)γ
µp/+γµ(p/+ − q/γ)γν 

It is a bit tedious to deal with all the traces, but using the following identities and the cyclic property of 
the trace they can be calculated: 

γµ/pγµ = −2/p (8) 

γµ/p1/p2γµ = 4(p1 · p2) (9) 

γµ/p1γ
νp/2γµ = −2/p2γ

ν/p1 (10) 

So one by one the traces are: 

tr [/p−γ
µ(/p− − q/γ)γ

ν/p+γν(p/− − q/γ)γµ] = 4 tr [/p−(p/− − q/γ)/p+(/p− − q/γ)] = 32(p− · qγ)(p+ · qγ) (11) 

tr [p/−γ
µ(/p− − q/γ)γ

ν/p+γµ(p/+ − /qγ)γν ] = −2 tr [p/−p/+γ
ν(/p− − q/γ)(/p+ − q/γ)γν ] 

= −8 [(p− − qγ) · (p+ − qγ)] tr [p/−/p+] (12) 

= −32 [(p− − qγ) · (p+ − qγ)] (p− · p+) 

= −32 
s + t + u 

(p− · p+) = −16M2(p− · p+)
2 

tr [/p−γ
ν(p/+ − /qγ)γ

µp/+γν(/p− − q/γ)γµ] = −16M2(p− · p+) (13) 

tr [/p−γ
ν(p/+ − /qγ)γ

µp/+γµ(/p+ − q/γ)γν ] = 4 tr [/p−(p/+ − /qγ)p/+(/p+ − q/γ)] = 32(p− · qγ)(p+ · qγ) (14) 

To sum it all up we get 

p+ · qγ M2(p− · p+) p− · qγ u 2M2s t 
|M|2 = 2g 2 e 2 + + = 2g 2 e 2 + + (15) 

p− · qγ (p− · qγ)(p+ · qγ) p+ · qγ t tu u 

In the CM frame the explicit expressions for the momenta are: 

p− = (E, 0, 0, E) p+ = (E, 0, 0,−E) (16) 

qγ = (Eγ , Eγ sinΘ, 0, Eγ cosΘ) qB = (EB,−Eγ sinΘ, 0,−Eγ cosΘ) (17) 

4E2 −M2 4E2 + M2 

M2 E2 

4E 4E 

With these relations the Mandelstam variables are: 

s = 2p− · p+ = 4E2 (19) 

t = −2p− · qγ = −2EEγ(1− cosΘ) (20) 

u = −2p+ · qγ = −2EEγ(1 + cosΘ) (21) 

Finally 

2E = Eγ + EB = B − Eγ 
2 =⇒ Eγ = EB = (18) 

t2 + u2 + 2M2s 1 + cos2 Θ+M2/E2 

|M|
2 
= 2g 2 e 2 = 4g 2 e 2 γ 

(22) 
tu 1− cos2 Θ 

dσ 1 Eγ 2 g2e2Eγ 1 + cos2 Θ+M2/Eγ 
2 

= |M| = , (23) 
d cosΘ 8E2 16πE 32πE3 1− cos2 Θ 

which reproduces PS (5.106) for me = 0 and M << Eγ , which is the high energy limit. 
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(c) Notice that (23) diverges for Θ → 0 or π. This divergence is cutoff by the electron mass which appears in 
the denominator next to the momentum invariant that gives rise to a collinear singularity. With the mass 
of the electron kept to the first non-trivial order and by (non-systematically) expanding around Θ = 0 we 
get: 

� 

� � 

2 �� � 

4 � m m
p− = (E, 0, 0, E2 −m2) = E 1, 0, 0, 1− + O	 (24) 

2E2 E4 

Eγ 
qγ = Eγ(1, sinΘ, 0, cosΘ) = xp− + O(Θ) x ≡	 (25) 

E 
′ p− ≡ p− − qγ ≈ (1− x)p− + O(Θ)	 (26) 

2 

t = (qγ − p−)
2 = −2qγ · p− + m 2 = −2xE2 1− cosΘ + 

m
+ O(m 2Θ2) (27) 

2E2 

M2 ′ = (p− + p+)
2 = ((1− x)p− + O(Θ) + p+)

2 = (1− x)s + O(EΘ)	 (28) 

With these momentum invariants we get near Θ = 0: 

1 1 1


t 
∝ 

1− cosΘ 
→ 

1− cosΘ + m
2 (29)


2E2 

2 1 + 2 Θ + M2 
2 2

x2E2dσ g e2Eγ cos x2 E2 g e x 2 + M2 

d cosΘ 
→ 

32πE3 (1 + cosΘ) 
� 

1− cosΘ + 2
m
E

2

2 

� ≈ 
32πE2 2 

� 

1− cosΘ + 2
m
E

2

2 

� (30) 

�	 2 2 (1−x)s � 

+ −	 dσ g e x + 2xE2 1 
σ(e e → γ(forward)B) = d cosΘ =	 d cosΘ � � 

d cosΘ 32π E2 1− cosΘ + m
2 

0	 0 2E2 

2	 2 

g2e2 x 
2 + (1 − x) 

� 

2E2 � g2e2 x 
2 + (1 − x) � s � 

=	 log ≈ log , (31) 
4π xs m2 4π xs m2 

where we used that s = 4E2 and that we are only interested in leading terms in s/m2 . Now it is just a 
matter of algebra to check that: 

α 1 + (1− x)2 s 
f(x) = log	 (32) 

2π x m2 
� 1 

σ(e + e − → γ(forward)B) ≈ dx f(x)σ(e + e − → B)|E2 =(1−x)s (33) 
CM

0 

= 

� 1 

dx 
α 1 + (1− x)2 

log 
� s � 

πg2 δ 
� 

(1− x)s −M2
� 

(34) 
2π x m2 

0 

= 
e

8

2

π

g2 

log 
� 

m

s 
2 

� 

0

1 

dx 
1 + (1

x 

− x)2 

δ 
� 

(1− x)s −M2
� 

(35) 

e2g2 1 + (1− x)2 � s � 
= log ,	 (36) 

8π xs m2 

which is identical to (31) with 1 − x = M2/s (see (28)). This formula after reinterpretation leads to the 
Gribov-Lipatov equations, which describe how the electron is seen to be a cloud of photons, electrons and 
positrons as we probe it with higher and higher energies. The QCD version of these ideas lead to the 
Altarelli-Parisi equations that are an essential tool for making predictions in hadronic processes. 

2.	 (a) There are three diagrams which contribute: A tree level vertex, a one loop diagram, and the lowest order 
counter term. 

(b) The contribution from the three diagrams is 

ddl −i −i −i 
iV (k1, k2, k3) = ig + igC + (ig)3	 (37) 

(2π)d (l − k1)2 + m2 l2 + m2 (l + k2)2 + m2 

We can combine the three terms in the integral via the usual Feynman parameters, completing the square 
in the denominator, shifting the variable of integration, etc. We get 

ddq 1 
iV (k1, k2, k3) = ig + igC + 2g 3 dx dy dz δ(x + y + z − 1)	 (38) 

(2π)d (q2 +Δ)3 
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with 

Wick rotating, we get 

q ≡ l − (k1x − k2y) 

Δ ≡ k2 
1 zx + k2 

2 yz + k2 
3 xy + m 2 

(39) 

(40) 

V (k1, k2, k3) = g + gC + 2g 3 
� 

dx dy dz δ(x + y + z − 1) 

� 

ddq 

(2π)d 
1 

(q2 + Δ)3 
(41) 

We can evaluate the momentum integral by dimensional regularization; we get 

d 
2 

� d �3−Γ(3 − ) 13 2V (k1, k2, k3) = g + gC + g dx dy dz δ(x + y + z − 1) (42) 
(4π) 

d 
2 Δ 

(c) For d < 6, the Gamma function is away from its poles and the integral is UV finite. For d = 6+ n (n ∈ N) 
we get a pole of the Gamma function, otherwise the integral is finite. This result agrees with the superficial 
degree of divergence (i.e. power counting) of our one loop Feynman graph. 

(d) At d = 6 we first separate the dimensions of g → gµǫ/2 by introducing an arbitrary scale µ and then expand 
in ǫ (d = 6− ǫ), hence from (42): 

ǫ 
2V (k1, k2, k3) g2 � ǫ�

� 

4πµ2 � 

= 1 + C + dx dy dz δ(x + y + z − 1) Γ (43) 
gµǫ/2 (4π)3 2 Δ 

� ǫ� 2 
Γ = − γ + O(ǫ) (44) 

2 ǫ 

4πµ2 
ǫ 
2 4πµ2 

Δ 
+ O(ǫ2) (45) 

ǫ 
1 + log = 

Δ 2 

We get as ǫ → 0 

V (k1, k2, k3) 
� 

2 
� 

4πµ2 � � 

= 1 + C + α dx dy dz δ(x + y + z − 1) + log − γ , (46) 
gµǫ/2 ǫ Δ 

where α = g2/(4π)3 . Requiring V (0, 0, 0) = g immediately gives 

� 
� � � � � � 

−γ 
�� 

2 4πµ2 1 1 4πµ2e
C = −α dx dy dz δ(x + y + z − 1) + log − γ = −α + log , (47) 

ǫ m2 ǫ 2 m2 

where we used that Δ(k1 = k2 = k3 = 0) = m2 . Plugging back in, we get the finite result 

V (k1, k2, k3) = g 1− α dx dy dz δ(x + y + z − 1) log 
m

Δ 
2 

+ O(g 4) (48) 

(e) As |k3|
2 ≫ m2 , �k1|

2 , �k2|
2 we have Δ/m2 → xyk3

2/m2 . Now 

� � � � �� 

xyk3
2 k3

2 

dx dy dz δ(x + y + z − 1) log = dx dy dz δ(x + y + z − 1) log xy + log (49) 
m2 m2 

The first term here is just some O(1) number which is small compared to log k3
2/m2 . Integrating over 

the second term (which is x, y, z independent) just gives a factor of 1/2. Thus, the result is 

� � � � �� 

V (k1, k2, k3) = g 1− 
α 

log 
k3
2 

+ O(1) + O(g 4) (50) 
2 m2 

which increases logarithmically with momentum. Notice that the loop correction can become O(1) as |k3|
2 

grows big and the perturbative calculation is no more to be trusted. The RG method helps us in this 
situation by resumming large logarithms and absorbing them into the running coupling. 
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