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8.324	 Quantum Field Theory II 

Problem Set 3 Solutions 

1.	 (a) Let’s denote the Lorentz transformation of p as p̃ = Λp. Since p = 0 p̃ = 0 this implies that δ4 (p) = 
Cδ4 (p̃) for some constant C. Then, for some function of momentum f , 

⇔ 

d4 ˜ d4f (0) = p f (p̃) δ4 (p̃) = p | det Λ|f (Λp) Cδ4 (p) = Cf (0)	 (1) 

implying C = 1 and δ4 (p) = δ4 (p̃). 

(b) Note that assuming p0 = ωp�

d3p� 1 d4p � 
2 2

� � 
0
� 

(2π)
3 2ωp�

f (p) = 
(2π)

3 δ p + m θ p f (p) 

d4p� � 
2 2

� � 
0
� 

= 3 δ p� + m θ p� f (p�) (2)
(2π)

d4p �	
2 2

� � 
0
� d3p� 1 

= 3 δ p + m θ p f (p�) = 3 f (p�) 
(2π) (2π) 2ωp�

In the second line we renamed p → p�, in the third we used | det Λ| = 1, p�2 = p2 and θ p�0 = θ p0 for 
Lorentz transformations connected to the identity. Then the identity we aimed at follows. 

(c) Let’s examine the matrix element 

�0|φ (0) |k�	 (3) 

Let U be the unitary operator on the Hilbert space that implements a boost from �k back to the rest frame 
of the particle at zero momentum. Then 

�0|φ (0) |k� = �0|U−1Uφ (0) U−1U |k� = �0|φ (0) U |k� = �0|φ (0) |m�	 (4) 

where |m� is the one particle state at zero momentum. Above, we have used the Lorentz invariance of 
the vacuum, and the Lorentz invariance of a scalar field operator (the result would have been different for 
spinor or vector fields). Thus this matrix element is actually k-independent, and so is its norm 

Z = |�0|φ (0) |k�|2	 (5) 

2.	 (a) The relevant transition amplitude is that between a state of one φ-particle at time minus infinity and a 
state with two χ particles at time plus infinity: 

�k1, k2; +∞|pφ; −∞� = �k1k2|T exp i d4 x
g 
2 
φχ2 |pφ�	 (6) 

= i
g 
2 
�k1k2| d4x φχ2|pφ� + O 

� 
g 2
� 
.	 (7) 

= i
g 
2	

d4 x e i(−k1−k2+p)·x�k1k2|φ (0) χ (0)2 |pφ� (8) 

= i
g 
2 
(2π)

4 
δ4 (k1 + k2 − p) · 2 ,	 (9) 

where the factor of two comes from the two possible pairings with the external particle. We thus read 
T (k1, k2; p) = −g. The decay rate is then given by 

1 1 d3k1 d3k2 
δ(4) (k1 + k2 − p) 

g2 

Γ = . (10)
2 (2π)2 2E (k1) 2E (k2) 2p0 
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The extra factor of (1/2) in front of the integral is there because the two outgoing particles are indistin­
guishable and we must not overcount final states. Writing 

Γ = 
16

g

π

2

2 M 
1

2E

d3

(

k

k
1

1) 2E

d3

(

k

k
2

2) 
δ(4) (k1 + k2 − p) , (11) 

µWe choose a Lorentz frame where p = M,�0 . The decay rate becomes 

g2 1 
� 

d3�k 
� 

d3k�� � � � � � � � � 
Γ = � � � � δ E �k + E k�� − M δ(3) �k + �k� . (12)

16π2 M 2E �k 2E� k�� 

Integrating over k�� we get 

g2 1 
� 

d3�k � � � � 
Γ = 

16π2 M � � 
�
��2 δ 2E �k − M . (13) 

4 E k 

The value k̄ of |�k| that solves the energy conservation equation M = 2E �k = 2 m2 + �k2 is 

M2 
k̄ = − m2 (14)

4 

Thus, changing variables in the delta function 

g2 1 
� ∞ πk2dk δ 

� 
k − k̄

� 
g2 1 

� 
πk̄
� 

g2 k̄ g2 
� � 

2m 
�2 

Γ = 
16π2 M 0 E (k)2 

E
2
(
k
k) 

= 
16π2 M M 

= 
16π M2 

= 
32πM 

1 − 
M 

(15) 

(b) This time the in/out matrix element is 

�kB , kC , kD; +∞|kA; −∞� = −ig dx�kB |B (x) |0��kC |C (x) |0��kD|D (x) |0��0|A (x) |kA� 
(16) 

= −ig (2π)4 
δ(4) (kB + kC + kD − kA) . 

We thus read T (kB , kC , kD; kA) = g . Since the particles B, C, and D are massless, their energies are equal 
to the magnitude of their momenta (say, k0 = |�kB |). Thus B 

21 
� 

d3�kB d
3�kC d

3�kD 
δ(4) (kB + kC + kD − kA) 

g
Γ = 

(2π)
5 

2|�kB | 2|�kC | 2|�kD| 2m 

= 
(2

g

π

2 

)
5 16

1 
m 

� 
d

�k

3�k

B

B d

�k

3�k

C

C d

�k

3�k

D

D 
δ(3) 

� 
�kB + �kC + �kD 

� 
δ 
� 
|�kB | + |�kC | + |�kD| − m 

� 
(17) 

| | | | | | 

= 
(2

g

π

2 

)
5 16

1 
m 

� 
d

k

3�k

B

B d

k

3�k

C

C d

k

3�k

D

D 
δ(3) 

� 
�kB + �kC + �kD 

� 
δ ( kB + kC + kD − m) 

where, in the last step, we defined k = |�k| for particles B, C, and D. We notice that the vector �kD is fully 
determined once we fix �kB and �kC . Doing the integral over �kD, 

Γ = 
(2

g

π

2 

)
5 16

1 
m 

� 
d

k

3�k

B

B d

k

3�k

C

C 

k

1 

D 
δ ( kB + kC + kD − m) , with kD = |�kB + �kC | . (18) 

By rotational invariance we can imagine doing the �kC integral before the �kB integral and orienting �kB along 
the z axis. This integral will eliminate all angular dependence, and then we can take d3�kB = 4πk2 dkB .B 
Thus 

d3�kB d
3�

B dkB k
2 2π sin θdθ . kC = 4πk2 
C dkC (19) 
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We now trade the variable of integration θ for the variable of integration kD. Note the ranges 

θ ∈ [0, π] → |kB − kC | ≤ kD ≤ kB + kC . (20) 

Since we are only changing one of the variables of integration it suffices to use 

dkD = dθ . (21) 
dkD 

dθ 

Since k2 
B + k2 

C + 2kB kC cos θ = k2 
D we obtain 

dkD = 
kB kC 

kD 
sin θ dθ . (22) 

Back in (19) 

d3�kB d
3�kC = 8π2 kB dkB kC dkC kDdkD , (23) 

and the decay rate becomes 

2g
Γ = 

64π3m 
dkB dkC dkDδ ( kB + kC + kD − m) . (24) 

|kB −kC |≤kD ≤kB +kC 

The region of integration is nicely represented using Cartesian kB , kC , and kD axes. Since all k are positive, 
the delta function restricts the integration to the portion of the plane kB +kC +kD = m that lies in the first 
quadrant; an equilateral triangle with vertices on the axes, a distance m from the origin. The inequalities 
for kD restrict further the domain to the “barycentric triangle” that is formed by joining the midpoints of 
the sides of the original triangle (see Figure 1). Because of the delta function, the value of the integral in 
(24) is given by the area of the projection of the barycentric triangle on any of the three planes, (kB , kC ), 
for example. The projection is shown in the figure, and its area is m2/8. We thus have 

2g m 
Γ = . (25)

512π3 

If Lint = −gAB3, particle A decays into three B particles. The contractions between the interaction and 
the final states give a combinatorial factor of 3!, so 

T (kB , kC , kD; kA) = g T (kB1 , kB2 , kB3 ; kA) = 6g . (26)→ 

Since the three decay particles are indistinguishable we must include a symmetry factor of 1/3! = 1/6 in 
the phase space integral 

1 
dkB dkC dkD → dkB1 dkB2 dkB3 (27)

6


Since T enters squared, we get Γnew = 6
1 62 Γ = 6Γ.
· · 

3. We can perform the same sorts of manipulations that led us to the scalar Lehmann representation. 

�0|Tψ (x) ψ̄ (y) |0� = θ �0|ψ (x) ψ̄ (y) �0| ̄ψ (y) ψ (x) |0� (28)0 0 0 0|0� − θ− y − xx y 

We insert a complete set of states, finding, 

d3p e−ipλ·(x−y) 

�0|ψ (x) ψ̄ (y) |0� = 
(2π)

3 
s,λ 

2Epλ 

�0|ψ (0) |λp, s��λp, s ¯|ψ (0) |0� (29) 

where s is the sum over all polarizations and λ is the sum over single and multi-particle states. We already 
made use of �0|ψ (0) |0� = 0. We observe that by the Wigner-Eckart theorem the sum only gives contributions 
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FIG. 1. The region of integration. 

if s = ± 1 . Performing the same manipulations that we used in class we get to: 2 

�0|ψ (x) ψ̄ (y) |0� = 
�	

d4p 
4 e

−ip·(x−y) 
� 

2π
δ 
� 
p

2

0 

E

− 

p 

p0 
λ 

� 
�0|ψ (0) |λp, s��λp, s|ψ̄ (0) |0�

(2π)
s,λ 

d4p
e−ip

� � 
2 2 

� 
= 

(2π)
4 

·(x−y) 

s,λ 

2πδ p + mλ �0|ψ (0) |λp, s��λp, s|ψ̄ (0) |0� (30) 

= 
d4p 

4 e
−ip·(x−y)2πΘ 

� 
p 0
� 
ρ (p) 

(2π)� � � � � 
¯2πΘ p 0 ρ (p) = 2πδ p 2 + m 2 �0|ψ (0) |λp, s��λp, s|ψ (0) |0�	 (31)λ 

s,λ 

Notice that we were not able to conclude that ρ = ρ −p2 yet. As in the scalar case, we can insert operators 
that boost the ket back to p = 0, 

�0|ψ (0) |p, s� = �0|U†Uψ (0) U†U |λp, s� = �0|S−1ψ (0) |λ0, s� = S−1�0|ψ (0) |λ0, s� (32) 

where S belongs to the spin 1/2 representation of the Lorentz group and we have used the Lorentz invariance 
of the vacuum. For simplicity we will assume P, C, T invariance to conclude that: 

� �	 � � � � 

�0|ψ (0) |λp, s��λp, s|ψ̄ (0) |0� = S−1�0|ψ (0) |λ0, s��λ0, s|ψ (0) |0�S = S−1 DS 
(λ) 

+ DV 
(λ) 

µ 
γµ S 

s s � � (33) 

= DS 
(λ) 

+ DV 
(λ) 

Λν
µγ

µ , 
ν 

where we used well known properties of Dirac matrices (e.g. PS (3.29)), the subscripts S and V denote scalar 
and vector respectively and we suppressed spinor indices. We used the assumed discrete symmetries to eliminate 

terms like DT 
(λ) 

γµγν . Furthermore we only have one four vector quantity, the four velocity of the boost, 
µν 
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so we can write: 

�0|ψ (0) |λp, s��λp, s|ψ̄ (0) |0� = DS 
(λ) 

+ DV 
(λ) 

ν 
Λν

µγ
µ = DS 

(λ) 
+ D�V 

(λ)
/pλ (34)


s
 � � � � � � � � � � � � � � � 
2πΘ p 0 ρ (p) = 2πδ p 2 + mλ 

2 DS 
(λ) 

+ D�V 
(λ)
pλ = 2πΘ p 0 −p 2 + ρ2 −p 2 p/ (35)/ ρ1 ,

λ 

Because we know that there is only a single set of single particle states in our theory for that case we get: 

�0|ψ (0) |m, s� = 
√
Zus (0) (36) 

�0|ψ (0) |m, s��m, s|ψ̄ (0) |0� = Z S−1 (us (0) ūs (0)) S = Z us (p) ūs (p) = Z (p/− im) , (37) 
s s s 

where we used the definition of single particle states. For Z = 1 we get back the free theory result. Now we are 
ready to determine the two point function. 

�0|ψ (x) ψ̄ (y) |0� = 
d4p 

4 e
−ip·(x−y)2πΘ 

� 
p 0
� � 
ρ1 
� 
−p 2

� 
+ ρ2 

� 
−p 2

� 
/p 
� 

(2π)

= 
∞ 

dµ2 d4p 
4 e

−ip·(x−y)2πδ 
� 
p 2 + µ 2

� 
Θ 
� 
p 0
� � 
ρ1 
� 
µ 2
� 
+ ρ2 

� 
µ 2
� 
p/
� 

(38) 
0 (2π)� � � � � � � � 

= 
0 

∞ 

dµ2 

(2

d

π

4p 

)
e−ip·(x−y)2πδ 

� 
p 2 + µ 2

� 
Θ 
� 
p 0
� 1

2 
iρ

µ 
1 
+ ρ2 (p/− iµ) + 

1

2 
− 
iρ

µ 
1 
+ ρ2 (/p + iµ)4 

We observe the appearance of positive and negative mass fermion propagators. Hence the Feynman propagator 
is: 

� ∞ � 
d4p

e−ip (x−y) 2
1 ρ

µ 
1 − iρ2 (/p − iµ) + 2

1 − ρµ 
1 − iρ2 (p/+ iµ) 

�0|Tψ (x) ψ̄ (y) |0� = dµ2
4 

·
p2 + µ2 − i�0 (2π)� ∞ � 

d4p
e−ip (x−y) 2

1 ρ
µ 
1 − iρ2 (p/− iµ) + 2

1 − ρµ 
1 − iρ2 (/p + iµ) 

= dµ2
4 

· (39) 
0 (2π) ⎡ � � 

p2 � 
+ µ2 − i� �⎤ � ∞ � 

d4p
e−ip (x−y) 

1
2 

iρ
µ 
1 + ρ2 

1
2 − iρµ 

1 + ρ2 
= dµ2

4 
· ⎣ + ⎦ 

0 (2π) i/p − µ + i� i/p + µ − i� ⎡ � � � �⎤ 

= 
� 

d4p
e−ip (x−y) Z 

+ 
� ∞ 

dµ2 
� 

d4p
e−ip (x−y) 2

1 iσ
µ 
1 + σ2 

+ 
2
1 − iσµ 

1 + σ2 · · ⎣ ⎦ 
2 
threshold

(2π)
4 i/p − m + i� m (2π)

4 i/p − µ + i� i/p + µ − i� 

where σs denote the spectral density of multi-particle states. The interpretation of this result is straightforward, 
we get contributions to the spectral density not only from particles, but also from ant-particles represented by 
the negative mass propagator in our formula. 

Using the canonical anticommutator of the spinor field one can prove that 

∞ � � 
1 = Z + dµ2 σ2 µ 2 . (40) 

4m2 

4. (a) The self energy is read off from the diagram and is given by 

� 
2
� 1 2 d6k1 d

6k2 6 −i −i 
iΠ p = 

2
(ig)

(2π)
6 
(2π)

6 (2π) δ (k1 + k2 − p) 
k1
2 + m2 − i� k2

2 + m2 − i� 
(41) 
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The Cutkosky rules tell us how to put the internal particles on shell–we replace propagators with delta 
functions and appropriate factors of i and 2π to get the imaginary part � � 1 d6k1 d

6k2 � � � � � � � � 
Im Π p 2 =

4 
g 2 

(2π) (2π)
(2π)

6 
δ (k1 + k2 − p) (2π) δ k1

2 + m 2 θ k0 (2π) δ k2
2 + m 2 θ k0 (42)6 6 1 2 

The delta functions and the theta functions we recognize as being part of the Lorentz invariant measure. 
We know that we can equivalently write things as � � 1 d5k1 d5k2

Im Π p 2 =
4 
g 2 

(2π) 2Ek1 (2π) 2Ek2 

(2π)
6 
δ (k1 + k2 − p) (43)5 5 

with the χ particles on shell. We can immediately do one of these integrals using the delta function–we 
also boost to a frame where �p = 0 (note, though, that we have not yet put this particle on shell). Thus we 
get 

Im Π 
� 
p 2
� 
= 

g2 d5k1 
δ Eφ − 2 m2 + �k2 (44) 

16 (2π)4 
m2 + �k1

2 1 

Now use d5k = 8π
2 
k1
4dk1 and define E ≡ 2 m2 + �k2 We get 3 1 . 

Im Π 
� 
p 2
� 
= 

g2π2

4 

k1
3dE 

δ (Eφ − E) (45) 
6 (2π) E � �3/2 

= 
g2π2 1 m2 

Eφ 
2 Θ(Eφ − 2m) (46) 

6 (2π)4 4 
− 
Eφ 

2 

Since we know the result is Lorentz invariant, we can write this for a general frame � 
2 �3/2 �� �� � απ 4m

Im Π k2 = − 
12 
k2 1 + 

k2 
Θ −k2 − 2m (47) 

with α ≡ g2/ (4π)3 
. Let’s compare this to the answer we got in class by just directly taking the imaginary 

part of that answer. In class, we got 

Π 
� 
k2
� 
= 
α 
2 

� 1 

dx D log 

� 

D

D 

0

� 

− 
2

1 
α 
� 
k2 + M2

� 
(48) 

0 | | 

with 

D = x (1 − x) k2 + m 2 − i� (49) 

D0 = −x (1 − x) M2 + m 2 (50) 

This expression is imaginary(there is a log of a negative number) when D < 0. Solving for the quadratic 
equation for this inequality, we get that the expression is imaginary when x is between x− and x+ with 

1 1 4m2 
x = 1 + (51)± 

2 
± 

2 k2 

Note that this works only for k2 < −4m2 . (The criterion of real roots is k2 < −4m2 or k2 > 0. The latter 
gives x± outside [0, 1] and D is real on this interval.) In this range, the imaginary part of the log is −iπ 
(the i� prescription tells us to come from the lower half plane). Thus � � πα 

� x+ �� � 
Im Π k2 = − dx D Θ −k2 − 2m (52)

2 � 
x− 

πα x+ � � �� � 
= − 

2 
dx x (1 − x) k2 + m 2 Θ −k2 − 2m (53) 

x−� 
2 �3/2 �� �απ 4m

= − 
12 
k2 1 + 

k2 
Θ −k2 − 2m (54) 

which agrees indeed. 
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(b) In lecture we obtained that � 
2 �3/2

απ 4m
Γ = M (55)

12 
1 − 

M2 

is the decay rate of φ 2χ if M > 2m. We see that equation (43) (when φ is put on shell) is exactly →
the tree level decay rate multiplied by M . Recall that at tree level |T |2 = g2 and hence the phase space 
volume gives us the correct result. Also by setting k2 = −M2 in (47) we get � �3/2� � απ 4m2 

Im Π −M2 = M2 1 − 
M2 

= MΓ (56)
12 

(c) We have 

1 
iGF (p) = (57) 

p2 + M2 − Re Π (p2) − iIm Π (p2) − i� 

We will Taylor expand the denominator around p2 = −M2 . For example � � � � � � dΠ −M2 

Π p 2 = Π −M2 + p 2 + M2

dp2 
+ . . . (58) 

� � � 
2 + M2

� dIm Π −M2 

= iIm Π −M2 + i p 
dp2 

+ . . . (59) 

by the renormalization conditions. Then we have 

1 
iGf (p) ≈ 

p2 + M 2 dIm Π(−M2) 
(60) 

− iIm Π (−M2) − i (p2 + M2) dp2 

1 ≈
−iMΓ + (p2 + M2) 

� 
1 − idIm Π(−M2) 

� (61) 
dp2 

dIm Π(−M2 )
1 + i dp2 Z ≈ 
p2 + M2 − iMΓ 

≈ 
p2 + M2 − iMΓ 

(62) 

dIm Π −M2 

Z = 1 + i (63)
dp2 

Here we have used the fact that, to O g2 order Γ = ZΓ and so this step introduces higher order error. 
Taking the derivative of our result in (a), we find 

dIm Π 
� 
p2 
� 

iαπ 
� 

4m2 �1/2 � 
2m2 � 

i 
dp2 

|p2−M2 = − 
12 

1 − 
M2 

1 + 
M2 

(64) 

Thus 

dIm Π 
� 
−M2 

� 
iαπ 

� 
4m2 �1/2 � 

2m2 � 

Z = 1 + i 
dp2 

= 1 − 
12 

1 − 
M 2 

1 + 
M 2 

(65) 

(d) We are interested in computing the integral 

dω −Ze−iωt 

iGF (t, �p) = (66)
2π (ω − ω0) (ω + ω0) 

with 

� � iMΓ 
ω0 = �p2 + M2 − iMΓ ≈ p�2 + M2 1 − 

2 (�p2 + M2)
1/2 

(67) 
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To evaluate the integral, we close the contour in the lower half plane and evaluate the residue at ω = ω0. 
(The clockwise contour introduces an extra minus sign.) Thus 

dω −Ze−iωt iZe−iω0t iZe−iEpt
t tM Γ M Γ 

2Ep 2Ep 

2π (ω − ω0) (ω + ω0)
= 

2ω0 
≈ 

2Ep 
e
− ∼ e− 

(68) 

with Ep = 
Ep = M , and 

�p2 + M2 and ∼ indicating the asymptotic decay of the modulus. For a particle at rest, 

GF ∼ e− Γ 
2 t (69) 

GF is intuitively interpreted as an amplitude: � � 
iZ 

GF (t, �p) = �0 p)φ(0, −� p, t p, t = 0�”in” (70)|φ(t, � p)|0� =
2Ep 

”out”�� |� , 

where the states cannot be interpreted as asymptotic states, as they decay. (We normalized the states as 
�p�|�q� = (2π)5δ(5)(p�− �q) to make the matching of the two formula more suggestive.) Nevertheless, it is clear 
that GF gives the overlap between an initial φ particle and a φ particle t times from there. The physical 
probability will be proportional to the amplitude squared and will go like ∼ e−Γt which indeed looks like a 
particle decaying with rate Γ. For a more general particle in motion, since Ep ≡ γM , with γ the Lorentz 

Γ 
γfactor, we get the amplitude squared goes like e− t which is the correct formula for a decaying, Lorentz 

boosted particle. 
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