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1.

()

Quantum Field Theory II

Problem Set 2 Solutions

PS 15.1 (¢) and (d): For this problem it is very useful to note that ¢! —¢7 are Pauli matrices in different
subspaces. t® can than be treated separately. We would like to verify that
tr [tftﬂ = C(r)s (1)
and evaluate C(r) for the fundamental representation of SU(3). Just checking a few cases, for example
1 (% 00
tH? = (0 -0 (2)
0 00
and so
tr [t14%] =0 (3)
which is a check on (1). Similarly
100 1
tr [t't'] = tr 010 || == (4)
000 2

implying that C(r) =  for the fundamental of SU(3). All other cases of (1) can be checked in a similar
way.
We now wish to verify that

triy = Ca(r) - 1 ()
A short but somewhat tedious computation gives Cy(r) = 4/3. Thus the relation
d(r)Ca(r) = d(G)C(r) (6)
4 1
3--=8-= 7
3 5 (7)
is verified.
PS 15.2: The generators of the adjoint representation of SU(2) are computed to be
00 O
(t)ep =ic®® = | 0 0 —i (8)
0¢ 0
0 04
(t%)ap =ic®?* = 0 0 0 (9)
—i 00
0 —2 0
(t3)ap =ie®* = i 0 0 (10)
0 00

(youwll notice that these are also the generators of the fundamental representation of SO(3).) We can
compute C(G) by, for example

000
tr [t ] =tr | 010 || =2 (11)
001
so C(G) = 2. One also finds that
2+ )+ %) =21 (12)

so that C3(G) = 2 as well. These results agree with PS (15.104).



2.

(a)

The equations of motion for the gauge field are

D, Fre = Jre (13)
with
IV = gy T (14)
The equations of motion for the spinor and its conjugate are
Py =mp Oy +ighh = —mi . (15)

Glancing at (14) we can see that the current must be covariantly conserved. By virtue of (13)
1 1 1
D,J" =D,D,F"'" = 3 [D,,D,]) F* + 3 {D,,D,} F'" = 3 [D,,D,] F* (16)

where we used that {D,,, D, } is symmetric, while F'* is antisymmetric in 4, v. Now we use the definition of
the field strength tensor and pay attention to the fact that it acts on an object in the adjoint representation:

Dy, D, PP =~ FGY - P = — I,

v lg v
VM?FM]:E[FVWFM]:Ou (17)

1

2
where for the penultimate equality we raised and lowered indices and used the antisymmetry of the com-
mutator.

An alternate solution in components is:

1 |
D, = S Dy, Dy o = & pebept po — ., (1)

where we again used the action of the covariant derivative on an object in the adjoint representation and
the total antisymmetry of fb°.

We can also directly calculate

Dy J" = g0y T + guT P + g* F 7P AL T (19)
The third term in this expression is equal to
AN T = ~ig? A" [T, T = —ig? (VT A — YAT ) (20)

where A should be understood as a matrix determined by the matter representation. Therefore (19) is
equal to

Dy J" = gT* P + g (97" + igf) T = mgpT ) — mgy T = 0 (21)

where in the second equality we have used (15).

We seek to show that both sides of (13) transform in the same way. Now, we have shown in class that F'
transforms in the adjoint meaning that infinitesimally

SFHvae — _fabcabF,uuc (22)

The covariant derivative is constructed, almost by definition, so that the covariant derivative of some object
has the same transformation property, namely that

§(D,F ) = —f*a’ D, F1e (23)

Now, infintesimally 8¢ = ia®T}), meaning
8J = ial (=T Ty + YT T 7 ) (24)
= 10" [Ty, Ty 79 (25)

_ _fabcabjuc (

[\
(=]
=



thus showing that both sides of equation (13) transform the same.

We can also, calculate the finite transformation of J”. Firstly, we derive the result using the abstract
language and properties we learned from the notes by Prof. Zwiebach. From Zwi (27) the action of a gauge
transformation is:

D, F" — adjU (D, F") =U (D, F*)U" = (D,F*)*UT:U" = (D, F"")* T{ Dy, , (27)

where Dy, (g) is a representation of the same group element g as U(g) on a different space. Using Zwi (33),
i.e. that Dyys are orthogonal matrices (Dl;l1 = Dup):

I = (g To) T — (U TIUY) Ty = (97" Ty Dytb) T = J* T Dy = J™ Ty Dy, (28)

which is the same transformation law, as in (27). Hence the equation of motion transforms covariantly.

Secondly, we do a direct calculation for SU(N). Putting matrix indices i, 7, ... on
Tij =TTy = gy (T um (T4 (29)
9,7 v 1 7oAV
= 5 Wi = 5y (30)
In the third line, we have used the identity for SU(N)
o o 1 1
(T*)im(T)ij = 5(513‘577”' - Nélm(sij) (31)

which can be found, eg., as equation (A.38) of Peskin. Thus under a gauge transformation ¢ — Ut and
v n v 1 n v 9,7 v 1 AV v
Jij = 5(‘/’1%7 imYm — N&-ﬂ/kaZm Uim®m) = Uim 5 (007" o — <5 0um iy VU = (U0, (32)

i.e. J¥ transforms in the adjoint.

3. (a) We start with the case of QED. Because £ = A*J, + ..., and the current is odd under C, A, is also odd
under C. This should hold for the non-abelian gauge field A, but not necessarily for its components Aj!
(Note that CT*C = —T*.) 0, has no transformation under C so F is odd, but Ly is even.

Under P, A; and 0; are even, whereas 9; and A; are odd. Since Ly has an epsilon tensor, each index
({t,1,2,3}) must occur exactly once. Since the spatial directions are odd, we get that Ly is odd under
parity.

The discussion for T is equivalent, except with the roles of space and time exchanged, and so Ly is odd under
T. We note with satisfaction that Ly is still even under CPT. (However, the discussion for components is
again more complicated in this case. Because T is anti-unitary to keep the commutation relations in the
group algebra invariant we need TT*T = —T%.)

In summary Ly breaks P, T (and hence C'P) and conserves C.

(b) We are aiming at:

0

Lo = 6472

O K" (33)

Let us start with the most naive guess for K*:

20, [ ALY, | = 26" ((0,A%) Fy, + AL, FY,)
= " (0, A% — 0, A%) Fy, + 2" AL [(9,00A% — 0,0,A%) + gf ™" ((0.43) A + AR89, AS)]
(34)

The first term can be completed to give F' F:

N (0, A — 0, AL) FY, = eV FY — gf*CAD ADFY, (35)



4. (a)

Plugging this into (34) — after relabeling indices — we obtain:

20, [N ALFY,| = VL FR, 4 26 g fUC AL AL ONAS (36)
where we used eﬂ”o‘ﬁAfLAiA%Af,fabcf“ed = 0, which is true by the Jacobi identity. (This is easier to see in

the matrix notation: e#** tr {4, [A,,[Ax, 4,]]} = 0.) Our naive guess didn’t turn out to be perfect, but
notice that the surplus term has one less derivative then the RHS. Now it is easy to see that

21N g fO0C AL AL OV A = gau [ AP g fobe A% AS AS] (37)

and hence
KF = 2¢Hv e [Agng — % g f“bcA‘jAZ;A;} = 4P AY [&Ag + % g f“bCAZ;A;]
(38)

= 8! M tr {A,, (ZAAP - 2L3gA>\AP>} = 4" tr {A,, (F,\p - %QAAAPH

where we listed some possible ways of writing the result. Note that K* does not have nice gauge transfor-
mation properties. It is a topological current used to characterize topological sectors in gauge theories.

Under a gauge transformation

A, — UA#UT—éauUUT. (39)

To gauge away the field we thus need to solve for a U that satisfies

0,U(x) +igU(x)Au(xz) =0. (40)

Differentiating (40) with respect to ¥ we find

0y0,U +igUd, A, +ig(d,U)A, =0

’ 2 (41)
0,0,U +1i9gU0, A, +g°UA, A, =0,
where we plugged in (40) to get to the second line. Antisymmetrizing in p and v we get
0= (0,0, — 0,0,)U(z) = —igU(z) F,, (42)

Thus F),, = 0 implies [0,,0,]U = 0. (If F),, # 0 the field configuration is not equivalent to zero, and (40)
cannot be solved.)

Equation (40) must hold at any point in spacetime and differentiating along any direction. In particular,
given a path parametrised by x*(5), 5 € [0,s], x(0) = z¢ we contract (40) with the tangent vector at each
point on the curve, to obtain differential equation for U (x(5)):

W 20— D) a5 Au(a ) (43)

with the initial condition U(z(0)) = 1. This equation should be familiar, it is a Schrodinger-like equation
that is satisfied by the non-abelian Wilson line (see for example PS equation (15.57)). The solution is

UT(;Z:(S)) =V(x(s)) = P{exp(—ig /05 ds d—;A#(x(E)))} , (44)



where P is the path-ordering operator.

Solving (43) is not equivalent to solving (40) because (43) only ensures that the projection of the left hand
side of (40) along the tangent of the path is zero. However, if the solution of (43) for U(z(s)) is independent
of the path, then we can choose a path with a different tangent direction at x(s) and conclude that the
component of the left hand side of (40) is zero along the other direction too. In four dimensions we need
four paths starting from zy with linearly independent tangent vectors to demonstrate that (40) is satisfied.
So, a path-independent solution U(z(s)) of (43) implies that the solution of (43) along any path provides
a solution of (40).

(c) Consider the change in U(s) when the path is changed from z#(5) to z#(5) + dz*(5) with fixed endpoints:
dz#(0) = 0 and dzH(s) = 0. Writing U(5) — U(8) + 06U (5). We find that the change in equation (43) is

dsU . dat a DAy dat  dbat

We can now consider %(5UUT) L. Using the hermitian conjugate of (43), we find

m
%(wm)—w dut défj Ut = —igU(aA di& v 4 4,08 )UT
S

v 43 T
— Tt s il Nt — jg— T 5k
zUaxyd_Ué —l—zgd(UAU)(Sx zgd(UAUéx)
Integrating (46) over the path from 5 =0 to § = s, we obtain
s A, d d
SU(s)UT(s) — sU(0)U(0) = —ig/ d5 [U%—%z? Ut - —(UA U } — igU(5) AL (5)U (5)52 ()]
0
(47)
Since 6U(0) = 0, dz(0) = 0, and dz#(s) = 0,
SU(s)U (5) = —ig / ds [U%dié vyt - i_(UAUUT)&c”} (48)
0 817” ds
The second term in the integrand is simplified using equation (43):
d 0A, dxt dzt
- = — el LS T ; gt
dS(UA,,U) ( igUA, )AU U(@“ e )U +UA, (ngH ng) . (49)

Plugging into (48) we get:

t . S _dat . f 5 _dat t
oU(s)U"(s) = —ig | d3 T&x U(0,A, —0,A, —ig[A,,A)U" =ig | ds T&x UF,,U (50)
0 S 0 S

If F,, = 0 then §U(s)UT(s) = 0, so 6U(s) = 0. We conclude that the solution is path independent for a
flat connection.

5. (a) Let us assume that A, and ;1# give the same field strength tensor:

F#V = 8#141, - 81,14# - 8;;12{1/ - 81/12{# (51)
ap= A, A, (52)
0=0ua, — Ovay = fuw (53)

Hence a, is an abelian gauge field with f,, = 0, According to Problem 4. this implies that a, is gauge
equivalent to zero. Hence there exists such an «:

1 Alternatively we can consider UtsU.



0=a,+ é@ua (54)
0 =ay = Ay A, (55)
A=A, + %8#04 : (56)

which is the statement that A, and ;1# are gauge equivalent locally.

(b) Recall
Fu = 0uAy — 0, A — ig[Ay, Al (57)
Suppose

A, = —%gy%g and A, = %gx%g (58)

then the field strength derives only from the derivative terms and the only nonzero components are

o3

Note that this field configuration is essentially Abelian, i.e. the fields only take values from a U (1) subgroup
of SU(2).
Now suppose

1 0,2

/ g /
The field strength now derives entirely from the commutator terms and the only nonzero components are

o3

F;y:ggz_szw (61)

Hence the two field tensors are equal.

(c) Since the field strength has no coordinate dependence
D,Fu, = 0,F —ig [AP7 FHV] (62)

will come only from the commutator terms. For the connection A this will be zero, as both A and F' are
in the o2 direction

DyF,, =0 (63)
However, the commutator terms are non-zero for A’. One finds
20° 20"
D.F;, =—g > and D, F,, =g 5 (64)

If there were a gauge transformation between A and A’ then this gauge transformation would also take
(DyFyy) to D,F,,. However, this is not possible, as the gauge transformation U (D,Fy,) Ut cannot
map zero to a non-zero object, because U is an invertible matrix. This is in contrast with the gauge
transformation properties of a gauge field, which involves an inhomogenuous term.

6. (a) We can follow exactly the same steps we followed for the Lorentz gauge calculation. We impose a generalized
axial gauge by inserting into the path integral a delta function

0(A3(z) — w(x)) (65)

where w is some arbitrary function. We can then do a gaussian weighted integral over all

Joureon |- fwr] (66)



This adds a gauge fixing term to the lagrangian such that we have

1 1
L=——(F%)* - —(49)*+... 67
)~ 549" + (67)
In momentum space, the quadratic part of this Lagrangian is

1 1
545 [—k%"“ + kTR — Zagag] 5 A, (68)

This operator can be inverted. It can be checked that the inverse is

2 ks 83 + ki kg
(€K% + Dkuky,  kuksdl + kyks #] sab (69)

i
k2 e [”“” i k2 k2

For £ — 0, the integral (66) oscillates very quickly except around w® = 0 thus imposing the axial gauge
A4 = 0. In this limit the propagator becomes

k2 — e B (70)

i kuky  kuksdy + k,ksds |
Nuv k2 k2 5
3 3

Alternatively, one need not introduce the fixing function w at all. Setting A3 = 0 in the original Lagrangian
gives a quadratic part in momentum space that is

%Ag (=" + k7 k"] 6°0 A}, (71)

where hatted indices run over 0, 1,2 but k2 includes all momentum components. This can be inverted to
give a propagator

—— | "ap + o (72)
k2 —ge | k3

These two methods are equivalent as this propagator is just the non-zero 3 x 3 block of (70).

When f, = 9;A%. things are very similar to the Lorentz gauge, except now indices run over only spatial
indices. The ghost Lagrangian becomes

ﬁghost — (aiai(sac _ gfabcaiA?)cb (73)

The propagator in momentum space is

ab
= (74)

where k2 only involves spatial components.
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