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8.324	 Quantum Field Theory II 

Problem Set 2 Solutions 

1.	 (a) PS 15.1 (c) and (d): For this problem it is very useful to note that t1 − t7 are Pauli matrices in different 
subspaces. t8 can than be treated separately. We would like to verify that 

b C(r)δab tr
[
tr
atr 

]
=	 (1) 

and evaluate C(r) for the fundamental representation of SU(3). Just checking a few cases, for example 

i 0 0 

 
11 2 

4 
 0 −i 0  (2) 

0 0 0 
t t = 

and so 

tr
[
t1t2

]
= 0	 (3) 

which is a check on (1). Similarly 
 

1 0 0 
 

tr
[
t1t1

]
= tr 

4

1  0 1 0  = 
2

1 
(4) 

0 0 0 

implying that C(r) = 12 for the fundamental of SU(3). All other cases of (1) can be checked in a similar 
way.


We now wish to verify that


tata = C2(r) ·	 (5) �r r 

A short but somewhat tedious computation gives C2(r) = 4/3. Thus the relation 

d(r)C2(r) = d(G)C(r) (6) 

4 1 
3 · = 8 · (7) 

3 2


is verified.


(b) PS 15.2: The generators of the adjoint representation of SU(2) are computed to be 


0 0 0 
 

(t1)ab =iǫ
a1b =  0 0 −i  (8) 

0 i 0 
 

0 0 i 
 

(t2)ab =iǫ
a2b =  0 0 0  (9) 

−i 0 0 


0 −i 0 
 

(t3)ab =iǫ
a3b =  i 0 0  (10) 

0 0 0 

(you’ll notice that these are also the generators of the fundamental representation of SO(3).) We can 
compute C(G) by, for example 


0 0 0 

 

tr
[
t1t1

]
= tr  0 1 0  = 2 (11) 

0 0 1 

so C(G) = 2. One also finds that 

(t1)2 + (t2)2 + (t3)2 = 2 · �	 (12) 

so that C2(G) = 2 as well. These results agree with PS (15.104). 
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2. (a) The equations of motion for the gauge field are 

DµF µνa = Jνa (13) 

with 

Jνa = g ψ̄γνT aψ (14) 

The equations of motion for the spinor and its conjugate are 

/Dψ = mψ ∂µ ψ̄γ
µ + ig ψ̄/A = −m ̄ψ . (15) 

Glancing at (14) we can see that the current must be covariantly conserved. By virtue of (13) 

DνJ
ν = DνDµF µν = 

1 

2 
[Dν , Dµ]F µν + 

1 

2 
{Dν , Dµ}F µν = 

1 

2 
[Dν , Dµ]F µν , (16) 

where we used that {Dν , Dµ} is symmetric, while F µν is antisymmetric in µ, ν. Now we use the definition of 
the field strength tensor and pay attention to the fact that it acts on an object in the adjoint representation: 

1
[Dν , Dµ]F µν = −

ig 
F (adj) · F µν = −

ig 
[Fνµ, F µν ] = 

ig 
[Fνµ, F µν ] = 0 , (17) 

2 2 νµ 2 2 

where for the penultimate equality we raised and lowered indices and used the antisymmetry of the com­

mutator.


An alternate solution in components is:


DνJ
aν 1

]F aµν 
ig 
fabcF b F aµν = 

2
[Dν , Dµ =

2 µν = 0 , (18) 

where we again used the action of the covariant derivative on an object in the adjoint representation and 
the total antisymmetry of fabc . 

We can also directly calculate 

DνJ
νa = g(∂ν ψT a/ 2fabcAb

νψγ
νT cψ (19) ψ̄)γνT aψ + g ¯ ∂ψ + g ¯

The third term in this expression is equal to 

2fabcAb
ν 
¯

ν 
¯ ¯ Aψ − ¯ (20) g ψγνT cψ = −ig2Abψγν 

[
T a, T b

]
ψ = −ig2 

(
ψT a/ ψ/AT aψ

) 

where A should be understood as a matrix determined by the matter representation. Therefore (19) is 
equal to 

¯ ¯ A
)
T aψ = ¯ ¯DνJ

νa = gψT aDψ / + g 
(
∂µψγ

µ + ig ψ/¯ mg ψT aψ −mg ψT aψ = 0 (21) 

where in the second equality we have used (15). 

(b) We seek to show that both sides of (13) transform in the same way. Now, we have shown in class that F 
transforms in the adjoint meaning that infinitesimally 

δF µνa = −fabcαbF µνc (22) 

The covariant derivative is constructed, almost by definition, so that the covariant derivative of some object 
has the same transformation property, namely that 

δ(DµF µνa) = −fabcαbDµF µνc (23) 

Now, infintesimally δψ = iαbTbψ, meaning 

δJνa ¯ ψT aT bγνψ
) 

(24) = iαb 
(
−ψT bT aγνψ + ¯


= iαbψ̄ [Ta, Tb] γ
νψ (25)


= −fabcαbJνc (26)
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thus showing that both sides of equation (13) transform the same.


We can also, calculate the finite transformation of Jν . Firstly, we derive the result using the abstract

language and properties we learned from the notes by Prof. Zwiebach. From Zwi (27) the action of a gauge

transformation is:


DµF µν → adjU (DµF µν) = U (DµF µν)U † = (DµF µν)a UT a
rU † = (DµF µν)a Tb

rDba , (27) 

where Dba(g) is a representation of the same group element g as U(g) on a different space. Using Zwi (33), 
i.e. that Dbas are orthogonal matrices (D−1 = Dab): ba 

¯ ¯	 ¯ D−1 JbνT r Jaν T rJn u = 
(
gψγνTa

rψ
)
Ta

r → 
(
gψU †γνTa

rUψ
)
Tb

r = 
(
gψγνTb

r 
ba ψ

)
Ta

r = a Dab = b Dba , (28) 

which is the same transformation law, as in (27). Hence the equation of motion transforms covariantly. 

Secondly, we do a direct calculation for SU(N). Putting matrix indices i, j, . . . on 

Jν Jnua(T a)ij = g ¯ (29) ij = ψlγ
ν(T a)lmψl(T a)ij 

g 1 
= (ψ̄jγ

νψi − δij ψ̄lγ
νψl)	 (30) 

2 N 

In the third line, we have used the identity for SU(N) 

1 1 
(δljδmi − δlmδij)	 (31) (T a)lm(T a)ij = 

2 N 

which can be found, eg., as equation (A.38) of Peskin. Thus under a gauge transformation ψ → Uψ and 

Jν g 
(ψ̄lU

† γνUimψm − 
1 
δij ψ̄kU

† γνUlmψm) = Uim 

g 
(ψ̄lγ

νψm − 
1 
δlm ψ̄kγ

νψk)U
† = 

(
UJνU †

) 
(32) ij → 

2 lj N kl	 2 N lj ij 

i.e. Jν transforms in the adjoint. 

3.	 (a) We start with the case of QED. Because L = AµJµ + . . ., and the current is odd under C, Aµ is also odd 
under C. This should hold for the non-abelian gauge field Aµ, but not necessarily for its components Aµ

a ! 
(Note that CT aC = −T a.) ∂µ has no transformation under C so F is odd, but Lθ is even. 

Under P , At and ∂t are even, whereas ∂i and Ai are odd. Since Lθ has an epsilon tensor, each index 
({t, 1, 2, 3}) must occur exactly once. Since the spatial directions are odd, we get that Lθ is odd under 
parity. 

The discussion for T is equivalent, except with the roles of space and time exchanged, and so Lθ is odd under 
T . We note with satisfaction that Lθ is still even under CPT . (However, the discussion for components is 
again more complicated in this case. Because T is anti-unitary to keep the commutation relations in the 
group algebra invariant we need TT aT = −T a.) 
In summary Lθ breaks P, T (and hence CP ) and conserves C. 

(b) We are aiming at: 

θ 
Lθ = ∂µK

µ	 (33) 
64π2 

Let us start with the most naive guess for Kµ: 

2∂µ 
[
ǫµνλρAaF a 

]
= 2ǫµνλρ 

(
(∂µA

a)F a ∂µ
)

F a ν λρ ν λρ + Aa
ν λρ

ǫµνλρ 
(
∂µ ν µ λρ + 2ǫµνλρAa

ν ρ − ∂µ λ

)
+ gfabc 

((
∂µ λ λ∂µ ρ= Aa − ∂νA

a
)
F a 

[(
∂µ∂λA

a ∂ρA
a Ab 

)
Ac

ρ + Ab Ac
)] 

(34) 

The first term can be completed to give FF̃ : 

ǫµνλρ 
(
∂µ

)
F a ǫµνλρF a F a − gfabcAb F aAa

ν − ∂νAµ
a 

λρ = µν λρ µA
c
ν λρ	 (35) 
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Plugging this into (34) – after relabeling indices – we obtain: 

[
ǫµνλρAa

νF a 
]

ǫµνλρF a λρ + 2ǫµνλρgfabcAaAb =2∂µ λρ µνF a µ ν∂λA
c
ρ (36) 

where we used ǫµναβAe
µAα

dAβ
b Aν

c fabcfaed = 0, which is true by the Jacobi identity. (This is easier to see in 

the matrix notation: ǫµνλρ tr {Aµ [Aν , [Aλ, Aρ]]} = 0.) Our naive guess didn’t turn out to be perfect, but 
notice that the surplus term has one less derivative then the RHS. Now it is easy to see that 

2ǫµνλρgfabcAaAb∂λA
c
ρ =

2 
∂µ 

[
ǫµνλρgfabcAaAb Ac

] 
(37) µ ν ν λ ρ3


and hence


Kµ 2ǫµνλρ 
[ 
AaF a 

1 
gfabcAaAb Ac 

] 
4ǫµνλρAa 

[ 
1 
gfabcAb Ac 

] 
= ∂λA

a
ρ += ν λρ − 

3 ν λ ρ ν 3 λ ρ 

8ǫµνλρ 
[ ( 

2ig 
)] 

4ǫµνλρ 
[ ( 

2ig 
)] (38) 

= tr Aν ∂λAρ − AλAρ = tr Aν Fλρ + AλAρ
3 3 

where we listed some possible ways of writing the result. Note that Kµ does not have nice gauge transfor­
mation properties. It is a topological current used to characterize topological sectors in gauge theories. 

4. (a) Under a gauge transformation 

i 
Aµ → UAµU

† − ∂µUU
† . (39) 

g


To gauge away the field we thus need to solve for a U that satisfies


∂µU(x) + igU(x)Aµ(x) = 0 . (40) 

Differentiating (40) with respect to xν we find 

∂ν∂µU + igU∂νAµ + ig(∂νU)Aµ = 0 

∂ν∂µU + igU∂νAµ + g 2UAνAµ = 0 , 
(41) 

where we plugged in (40) to get to the second line. Antisymmetrizing in µ and ν we get 

0 = (∂ν∂µ − ∂ν∂µ)U(x) = −igU(x)Fνµ (42) 

Thus Fµν = 0 implies [∂µ, ∂ν ]U = 0. (If Fµν � 0 the field configuration is not equivalent to zero, and (40) =

cannot be solved.)


(b) Equation (40) must hold at any point in spacetime and differentiating along any direction. In particular, 
given a path parametrised by xµ(s̄), s̄ ∈ [0, s], x(0) = x0 we contract (40) with the tangent vector at each 
point on the curve, to obtain differential equation for U(x(s̄)): 

dxµ ∂U dU(x(s̄)) dxµ 
= = − igU(x(s̄))Aµ(x(s̄)) , (43) 

ds̄ ∂xµ ds̄ ds̄

with the initial condition U(x(0)) = 1. This equation should be familiar, it is a Schrödinger-like equation 
that is satisfied by the non-abelian Wilson line (see for example PS equation (15.57)). The solution is 

s 

U †(x(s)) = V (x(s)) = P 
{
exp

(
−ig 

∫
ds̄
dxµ 

Aµ(x(s̄))
)}

, (44) 
0 ds̄
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where P is the path-ordering operator. 

Solving (43) is not equivalent to solving (40) because (43) only ensures that the projection of the left hand 
side of (40) along the tangent of the path is zero. However, if the solution of (43) for U(x(s)) is independent 
of the path, then we can choose a path with a different tangent direction at x(s) and conclude that the 
component of the left hand side of (40) is zero along the other direction too. In four dimensions we need 
four paths starting from x0 with linearly independent tangent vectors to demonstrate that (40) is satisfied. 
So, a path-independent solution U(x(s)) of (43) implies that the solution of (43) along any path provides 
a solution of (40). 

(c) Consider the change in U(s) when the path is changed from xµ(s̄) to xµ(s̄) + δxµ(s̄) with fixed endpoints: 
δxµ(0) = 0 and δxµ(s) = 0. Writing U(s̄) → U(s̄) + δU(s̄). We find that the change in equation (43) is 

dδU 
+ ig 

dxµ 
δUAµ + igU 

(
∂Aµ

δxν 
dxµ 

+ Aµ 

dδxµ
) 

= 0 . (45) 
ds̄ ds̄ ∂xν ds̄ ds̄

We can now consider d (δUU †) 1 . Using the hermitian conjugate of (43), we find 
ds

d 
(δUU †) = δU 

dU † 

+ 
dδU 

U † = −ig U 

(
∂Aµ dx

µ 

δxν + Aµ 

dδxµ
) 
U † 

ds̄ ds̄ ds̄ ∂xν ds̄ ds̄
(46) 

= −ig U 
∂Aµ dx

µ 

U †δxν + ig 
d 
(UAµU

†)δxµ − ig 
d 
(UAµU

†δxµ) . 
∂xν ds̄ ds̄ ds̄

Integrating (46) over the path from s̄ = 0 to s̄ = s, we obtain 

δU(s)U †(s)− δU(0)U †(0) = −ig 
∫ s 

ds̄

[ 
U 
∂Aµ dx

µ 

δxνU † − 
d 
(UAνU

†)δxν
] 
− igU(s̄)Aµ(s̄)U

†(s̄)δxµ(s̄)
∣∣
0 

s 

∂xν ds̄ ds̄0 
(47) 

Since δU(0) = 0, δxµ(0) = 0, and δxµ(s) = 0, 

s∫ [ 
∂Aµ dx

µ d 
] 

δU(s)U †(s) = −ig ds̄ U δxνU † − (UAνU
†)δxν (48) 

0 ∂xν ds̄ ds̄

The second term in the integrand is simplified using equation (43): 

d 
(UAνU

†) = 

( 
−igUAµ 

dxµ
) 
AνU

† + U 

(
∂Aν dx

µ
) 
U † + UAν 

( 
igAµ 

dxµ 
U †

) 
. (49) 

ds ds̄ ∂xµ ds̄ ds̄

Plugging into (48) we get: 

s s∫
dxµ 

∫
dxµ 

δU(s)U †(s) = −ig ds̄ δxνU (∂νAµ − ∂µAν − ig [Aν , Aµ])U
† = ig ds̄ δxνUFµνU

† (50) 
ds̄ ds̄0 0 

If Fµν = 0 then δU(s)U †(s) = 0, so δU(s) = 0. We conclude that the solution is path independent for a 
flat connection. 

5. (a) Let us assume that Aµ and Ãµ give the same field strength tensor: 

Fµν = ∂µAν − ∂νAµ = ∂µÃν − ∂νÃµ (51) 

aµ ≡ Aµ − Ãµ (52) 

0 = ∂µaν − ∂νaµ = fµν (53) 

Hence aµ is an abelian gauge field with fµν = 0, According to Problem 4. this implies that aµ is gauge 
equivalent to zero. Hence there exists such an α: 

1 Alternatively we can consider U†δU . 
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e 
1 

0 = aµ + ∂µα (54) 

1 
− ∂µα = aµ = Aµ − Ãµ	 (55) 
e 

1 
Ãµ Aµ 

e
∂µα ,	 (56) = + 

which is the statement that Aµ and Ãµ are gauge equivalent locally. 

(b) Recall 

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]	 (57) 

Suppose 

1 σ3 1 σ3 

Ax = − gy and Ay = gx	 (58) 
2 2 2 2 

then the field strength derives only from the derivative terms and the only nonzero components are 

σ3 

Fxy = g = −Fyx (59) 
2 

Note that this field configuration is essentially Abelian, i.e. the fields only take values from a U(1) subgroup 
of SU(2). 

Now suppose 

σ1 σ2 

A ′ x = and A ′ y = (60) 
2 2 

The field strength now derives entirely from the commutator terms and the only nonzero components are 

σ3 
′ ′ Fxy = g = −Fyx	 (61) 

2


Hence the two field tensors are equal.


(c) Since the field strength has no coordinate dependence 

DρFµν = ∂ρFµν − ig [Aρ, Fµν ]	 (62) 

will come only from the commutator terms. For the connection A this will be zero, as both A and F are 
in the σ3 direction 

DρFµν = 0	 (63) 

However, the commutator terms are non-zero for A ′ . One finds


σ2 σ1

′ 2 ′ 2DxFxy = −g and DyFxy = g	 (64) 

2	 2 

If there were a gauge transformation between A and A ′ then this gauge transformation would also take 
(DxFxy) 

′ to DxFxy. However, this is not possible, as the gauge transformation U (DxFxy)U
† cannot 

map zero to a non-zero object, because U is an invertible matrix. This is in contrast with the gauge 
transformation properties of a gauge field, which involves an inhomogenuous term. 

6.	 (a) We can follow exactly the same steps we followed for the Lorentz gauge calculation. We impose a generalized 
axial gauge by inserting into the path integral a delta function 

δ(Aa 
3 (x) − ωa(x))	 (65) 

where ω is some arbitrary function. We can then do a gaussian weighted integral over all 
∫ [ 

1 
∫ ] 

Dωa exp − (w a)2	 (66) 
2ξ 
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This adds a gauge fixing term to the lagrangian such that we have 

1 1 
L = − (F a )2 − (Aa 

3 )
2 + . . . (67) 

4 µν 2ξ 

In momentum space, the quadratic part of this Lagrangian is 

1 
Aa

σ 

[ 
−k2ησµ + kσkµ − 

1 
δ3 
σδ3 

µ

] 
δabAb

µ (68) 
2 ξ 

This operator can be inverted. It can be checked that the inverse is 

i 
[ 

(ξk2 + 1)kµkν kµk3δν 
3 + kνk3δ

3 
] 

− 
k2 − iǫ 

ηµν + 
k3
2 − 

k3
2 

µ 
δab (69) 

For ξ → 0, the integral (66) oscillates very quickly except around ωa = 0 thus imposing the axial gauge 
Aa 

3 = 0. In this limit the propagator becomes 

− 
k2 −

i 
iǫ 

[ 
ηµν + 

kµ
k

k

3
2 
ν 
− 
kµk3δν 

3 

k

+ 

3
2 

kνk3δµ 
3 
] 
δab (70) 

Alternatively, one need not introduce the fixing function ω at all. Setting A3 = 0 in the original Lagrangian 
gives a quadratic part in momentum space that is 

1 
Aa 

[
−k2ησ̂µ̂ + kσ̂kµ̂

]
δabAb (71) 

2 σ̂ µ̂

where hatted indices run over 0, 1, 2 but k2 includes all momentum components. This can be inverted to 
give a propagator 

1 
[ ] 

− 
k2 − iǫ 

ηµ̂ν̂ + 
kµ
k
ˆ

3 

k
2 
ν̂

δab (72) 

These two methods are equivalent as this propagator is just the non-zero 3× 3 block of (70). 

(b) When fa = ∂iA
i
a. things are very similar to the Lorentz gauge, except now indices run over only spatial 

indices. The ghost Lagrangian becomes 

Lghost = c̄a(∂i∂
iδac − gfabc∂iAi

b)c b (73) 

The propagator in momentum space is 

i 
δab (74) 

~k2 

where ~k2 only involves spatial components. 
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