8.324

Quantum Field Theory II

Problem Set 1 Solutions

1. The Lagrangian in question is

L=—ip() —m)y (1)

where 1 is a spinor doublet.

(a)

Since the generators T, are Hermitian, the transformation laws are

51 = ieaTut) (2)
5 = —ive, T, (3)

The Lagrangian is quite trivially seen to be invariant
5L = —i6(P — m) — i (P — m)oYp = —ith(—ieTa) (@ — m)p — i(P — m)(ieTa)p =0,  (4)

where we used the trivial relation [T,,v"] = 0.

We use the so called Noether method (described in e.g. Di Francesco et al.: CFT Section 2.4.2) to find the
conserved current, i.e., we pretend that the transformation parameter € is spacetime dependent. Then

oL = (‘%%WWTW (5)
which implies
Jy = _1L’VHTa"/J (6)

(Note, that Lie algebra indices are up and down without any regard for their placement). Using the EoMs
the current can be shown to be conserved.

The conserved charges are thus

Qo= [ @rb@n Tte) = [ vt @) Tuie) 7)

In the following we will repeatedly use the relations
[Taa Tb] = ifabcTc (8)
{i(2), ] (W) Hao—yo = 6(F — )65 (9)

where i, j are indices in the Lie algebra representation space. We write:

iMmemn:kﬂg/ @ [0] () (), i (@) (10)

x0=yOYchoice made

Now we use the relation:

[AB,C] = A{B,C} — {A,C} B, (11)

which for our case gives (A =] (y), B =;(y), C = (x)):

i[€aQa, Vi(2)] = —icaT7; / dx §(% — §)outi (y) = —ieTigi(x) = =8y (x) (12)
20=40



(d)

()

We wish to compute [Qq, Q). We write down the commutator explicitly

(Qus Qo] = T5 T / d*vdy [0} )05 0), vl @) @) (13)

0=9Ochoice made

We use the relation

[AB,CD] = A{B,C}D — AC{B,D}+{A,C} DB—C{A,D} B, (14)

which for our case gives (A = z/;j(y), B =1,(y), C = 7,/);2 (), D =y(x)):

d3$ dsy 5(5_5) (¢j ($)¢l (‘T)(S]k - Q/JIZ (.’L’)’Q/J] (‘T)(Sll) = /d3.’II WL(UC) [Tau Tb] "/J(:I;) = Z'6(1170620
(15)

[Qaa Qb] = Tz(;Tlgl/

20=y0

as expected.

We will use the Hadamard lemma that can be found e.g. under the wikipedia article Baker-Campbell-
Hausdorff formula, i.e.

XY X =Y X Y]+ X X Y]] (16)

We use the property of @s derived in this problem

[iAaQa, ()] = —iATuth(x) (17)
[iAQs, [18aQa, ()] = Aalo T [Qb, 5 ()] = —AaM T TG b0 (2) = —(MaTa) () (18)
(19)

and plugging into (16) we get

UWU =¢+ iAaTa¢($) + %(AaTa)zw(x) +--=exp (iAaTa) Y=Uy. (20)

Take the parallelogram to have it’s left corner at x, an upper edge given by the vector a* and a lower edge
given by b*. The quantity we are interested in is

Uz, z) = eap [ie ]{ Aud;v”} (21)

infintesimally. Let’s circle around the parallelogram, counterclockwise, starting at x. Since we are inter-
ested in the loop infintesimally, the integral along each path just becomes A multiplied by an infintesimal
parameter. We evaluate A at the midpoint of each segment of the parallelogram. We take the vectors to
be

at = eqel (22)
V= epel (23)

with infintesimal €., €, and unit basis vectors e,, e,. For convenience we take x = 0, and any time A is
written without an argument, i.e. A*, we mean A*(0). Taylor expanding to O(e?), the contribution from
the first segment to the integral is

e AM(8) = enel (A" + e0, A" ) (24)
The contribution from the second segment is

cael A (e + %é’a) = eqel (AF + el 8, Abey + eZ&,,A“%“) (25)



From the third,
—epely AM (.6, + %béb) = —eel (A" + e 0, Aleq + eZ&,A”%b) (26)

and from the fourth

—eaef{A“(%a(?a) = —eqel(AF + e;;aUA#%“) (27)
Adding everything together, we get
%A#d:r“ = eaepelel Fly + O(?) = a" F b7 4+ O(e%) (28)
for the abelian field strength
F,uv = 8,uAv - auA,u (29)
And so
U(x,x) =1+ ieaF,,b" + O(e?) (30)

Note, that you might think there’s an O(e?) coming from the next term in the exponential expansion of
(21), but we will verify in the next part of the problem that this term vanishes in the abelian case.

In the non-abelian case, we are interested in
U(x,x) = Pexp [ig?{Aud:v“} (31)

_ [1 +ig § Auder + oy st § dy P04, ) + OE) (32)

where P is the path ordering symbol, putting higher values along the path to the left of the expression.
The calculation of ig § A, dz* to O(e?) is exactly the same as in the abelian case.

ig ]{ Adat = igat(0,A, — 0, A,)b” + O(e?) (33)
The new complication is the calculation of

by choosing pairs of sides on the parallelogram. For example, integrating over the pair of the first side and
the second side gives

elepe’ e P [A#(%bé'b)A”(ebgb + %“é'a)} = elepeleady A, + O(e%) (35)
because the second side is further along the path than the first side. Doing this for all pairs of sides gives
C92 f e § ayp(an@)ant) = %ot (4,4, (36)
Combining this with (33) gives
Ulz,z) =1 +ig 7{ Ay da + @ ]{ da 7{ dyPP(A, () A () + O(€*) = 1+ iga Fpnb” + O(c®)  (37)
now with F' as the non-abelian field strength. For an arbitrary infintesimal loop, this will generalize to
U, a) =1+ %iga‘“’FW +0() (38)

where o” is the surface area element.



3. We want to show that

0= D,Fy» + DyF,, + D,F, = ¢*""*D,F,\ (39)

where « is different from p, v, \. We will show that the RHS can be written as

A D, Dy, DAl = 0, (40)

which vanishes by the Jacobi identity. We now act with (40) on an arbitrary vector in the fundamental repre-
sentation ¢(z) and use [D,, D] = —igF,x:

0= e [D,, [Dy, DAl] ¢ = —ige®™* [Dy, Fyul 6 . (41)

We use the defining property of the covariant derivative D(F'¢) = (DF)¢ + F(D¢), which can be checked to be
true in this special case by calculation to simplify our formula to

0= —ige®™ [Dyy, Fyx] ¢ = —ige®™ ™ (Dyy (Foxg) — FoaDyuo) = —ige™™ (D Fox) 6 - (42)

Because ¢ is arbitrary we proved that (39) holds.

One could of course explicitly calculate out all terms and see that (39) is true, but this is a shorter way. You
can test your understanding of covariant derivatives by going through the calculation. You should pay attention
to the way the covariant derivative acts on a vector in the adjoint representation:

(DL M)* = 8, M® — ig A% (TS M)* = 0, M® + i ft AL M® = (9,M —ig[A,, M])" . (43)

4. We will stick with the conventions used in class opposite to what Peskin uses. Here we first demonstrate that
the Feynman propagator can be written as an integral of the propagator for the non-relativistic Schrédinger
equation given by Peskin. From the definition of the Feynman propagator

(=0 + m® —ie) Dp(z,y) = —id(z — y) (44)
we have

Dr(z,y) = —i<:1: !

P2 +m?2 — e

y> = / dT <x|e_iHT|y>, Pp = —10,, H = p* +m?* —ic (45)
0

Note that D(z,y,T) = <:1:|e*m T|y> is precisely the propagator for the non-relativistic Schrodinger equation
given by Peskin. We thus obtain

Dp(z,y) = /000 dT D(z,y,T) . (46)

If we want to represent D(x,y,T) as a path integral we can easily do that by determining the Lagrangian
corresponding to H by Legendre transformation.

1 /dz\?
L_Z(E) —m2 (47)

D(aT) = (ale=ly) = [ o DA e l / " (i <%>2—m2>] (48)

Here the particle with the non-relativistic mass given by % moves in four dimensions (3 spatial and 1 time of
the Minkowski spacetime) with an additional constant potential m?.



(a) The propagator for a one-dimensional non-relativisitic Schrodinger equation is given by (with the non-

relativistic mass given by %)

1 . i(m;TyP (49)
VAT

Here the particle moves in four dimensions (3 spatial and 1 time of the Minkowski spacetime) with an
additional constant potential m?2, thus

K(z,y,T) =

1 ei(w;Ty)2 —im2T
(4miT) s /—4AmiT

Note that the time direction contributes to an additional — sign in the prefactor. We thus find for spacelike
separation (time-like separation can be obtained by analytic continuation)

D(:E,y,T) = (50)

1 o w2 . 2 1 m
D = dT T2 -t — ([ —— | K — 51
F(fE,y) (47_021‘/0 e 4 (471')2 (|:17—y|> 1(m|$ yl) ( )

which is precisely the expression for the Feynman propagator in coordinate space.

The propagator in a background Maxwell field satisfies the equation:
(=D? + m?) DM (2,y) = —i6(x —y), Dy =0, —ieA, = i(p, — eA,) (52)

From the discussion of (72)—(46) we then conclude that

*° T H@W
D (z,y) = / ar DN (a,y,T), DD (z,y,T) = (ale T |y) (53)
0

with
HW = (p—eA)? + m? (54)

Since the corresponding Lagrangian is given by

1 (dz\" d
r=1(5) +ead - (55)

D) (z,,T) has the standard path integral representation given by

T 2
1 /dz dz
DWW (z,y,T =/ Dz(t) exp z/ dar | = (_> +eAnin 2
( ) 2(0)=y, 2(T)=x ( ) 0 4 \ dt dt
T 2 T
1/d d
:/ Dz(t) exp l/ dt | (—Z> —m? —i—ie/ dt AnZE .
2(0)=y, z(T)=x 0 4 \ dt o dt

where in the las step we separated the A, dependence into a Wilson line.

As asked by the problem we now verify the above path integral representation does satisfy the Schrodinger
equation (for T'# 0 and x # y)

(i@T - H(A)) D (z,y,T) =0 (57)

Note that H only acts on x. This is easily carried out by using
+ie(z! — 2M)A, <:C ;_ Z)) DWW (z,y,T)

1 12— 2\?
D(A)(x,y,T—F €) = m /d4z exp <ze |? ( ; ) —m?
(58)

and expanding the right hand side of the equation to O(¢). Note that as first pointed out by Feynman
himself it is important to evaluate A, at middle point (z + z)/2. We use our knowledge about the path
integral in general (or the Brownian motion) to note that the important domain of z will be in a /e




neighborhood of z. This can also be directly seen from the Gaussian integral itself, because it has a
variance 0% = O(¢). So we relable z = 2 — y/eu and expand in € to get:

DYz, y, T +¢) = i(41r)2 /d4u exp (z EuQ - emﬂ +ieveut A, (x - \/Eg)) D (z — \feu,y,T)
- ﬁ /d4u exp ( ) {1+ Ve iu, [eA*(z) +i0"] (59)

—iem? 4+ € [e2 AN (@) A¥ (2) + ie(0 A" (@) + 2ieA"0” — 90"] } DD (@, T) + O(¥2)

Now we make use of the fact that the remaining Gaussian integral has zero expectation value and hence
terms with odd powers of /¢ vanish:

( 4‘; d*u exp (%ﬁ) - (60)
i(;) d4uu” exp (%ﬁ) - (61)

: (4;)2 / dhuutu exp <iu2> = — i (62)
i(4;)2 /d4 utuu exp (%ﬁ) - (63)

Thus we get:

DY (z,y, T +¢€) = {1 —ie [m® + 2 A% (z) + ie(0, A" (x)) + 2ieA D, — %]} DWW (z,y, T) + O(?) (64)
0= [i0r — (m* + 2 A%(z) + ie(0, A" () + 2ieA D, — 0%)] DY (z,y,T) , (65)

which is the Schrédinger equation.
There is a technically different derivation of the same result that we are going to demonstrate in part (d).

The gauge invariant Lagarangian is:

1 .
L= =5 tr[FuF") = (D,®)" Dy® —m’®"d (66)
D,® = 8,8 — igA,® (67)

We write the non-Abelian generalization of the result of (b) with an arbitrary ordering O:

T 2 T
1 /dz dz
; dt | =(=) —m? ; dt =B A+
Z/O (4((#) m)—l—zg/o i (2)

which is a matrix in group space. Then applying (58) to this case, it can be immediately seen that the
correct Schrodinger equation is recovered only if one uses path ordering (i.e. A, with larger ¢t stands to
the left).

However, we will give an alternative derivation of the Schrédinger equation:

(68)

DY (z,y, T) = / Dz(t) Oexp
(0)=y, 2(T)=x

i DA (2,y, T) = /(0) s Dz(t) O [exp [iS]z]] (_ 551[5]”

: 1 /dr\? )
N /Z(O)—% 2(T)== D) O |exp iSle] lz (E> +m (69)




where we used the formula well known from classical mechanics, —95[z]/0T = H and plugged in the
boundary conditions z(0) = y, z(T) = x. Secondly we recall the role of time-slices played in the definition

of the path integral:

D(A) (xj Y, T) = /dZ O |:D(A) (x, z, E)D(A) (Zu Y, T - €)j| (70)

- /dz 0) [exp {Z ((‘”;7”2 - m%) + ig(x — z)A“(a:)] D@ (2,9, T — e)} +...

€

Thirdly we collect the terms from the Schrodinger equation:

= [i0r — (m® + g A%(z) + ig(0, A" (2)) + 2igArD, — 9%)] DU (2,y,T) (71)
2D (g, y, T) = 82/dz O [exp {z (M - m2e) +ie(z — z)A“(m)] D (z,y, T — e)} +...

Q,

4e

Dz(t) O

exp iS1-] [—i(‘(%) o2 4 (a) — g2 A%()

dz
(1900, ") + 209 A4"(2)) 5,0V .. T) = [ D5(t) A*(@)O |exp liSE] o G +20°A,0)|
(0)=y, 2(T)==
~g*A%(2) D (2, y, T) :/ Dz(t) (—g*A*(x))Oexp [iS[2]] (73)
(0)=y, =(T)
To have (69), (72)-(73) add up to zero we need the following relation to be true (schematically):

A(x)O [exp[iS] ... A(z)...] = Olexp[iS]... A(z) ... A(z) ...] (74)

This is true only if the operation O is the path ordering, P. Then the Schrodinger equation is indeed
satisfied.
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